forked from WiseLabAEP/GMMNLSE-Solver-FINAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolve_for_modes_1550.m
97 lines (79 loc) · 3.06 KB
/
solve_for_modes_1550.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This script builds the fiber index profile and calls the svmodes function
% to solve for the lowest m modes over a range of frequencies.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set parameters
Nf = 20; % number of frequency points at which the modes will be calculated
lambda0 = 1550e-9; % center wavelength, in m
lrange = 180e-9; % wavelength range, in m. If 0 only the center wavelength will be used
num_modes = 30; % number of modes to compute
radius = 25; % outer radius of fiber, in um
folder_name = 'Fibers/GRIN_1550'; % folder where the output will be stored
Nx = 800; % number of spatial grid points
spatial_window = 200; % full spatial window size, in um
profile_function = @build_GRIN; % function that builds the fiber
extra_params.ncore_diff = 0.0137; % difference between the index at the center of the core, and the cladding
extra_params.alpha = 2.08; % Shape parameter
%% Calculate the modes
mkdir(folder_name);
if ispc
sep_char = '/';
else
sep_char = '\';
end
% Set the range in frequency space, which is more objective
c = 2.99792458e-4; % speed of ligth m/ps
if lrange == 0
l = lambda0*10^6;
else
f0 = c/lambda0; % center frequency in THz
frange = c/lambda0^2*lrange;
df = frange/Nf;
f = f0 + (-Nf/2:Nf/2-1)*df
l = c./f*10^6; % um
end
% At each wavelength, calculate the modes
for kk = 1:length(l)
lambda = l(kk); % wavelength
% Build the index profile. The funcation can be arbitrary, and can take
% any extra parameters
[epsilon, x, dx] = profile_function(lambda, Nx, spatial_window, radius, extra_params);
guess = sqrt(epsilon(Nx/2, Nx/2));
% Quickly show the index profile to make sure everything's working
% correctly
gg=figure;
subplot(2,1,1)
pcolor(x,x,epsilon.^0.5)
colormap(gray)
colormap(flipud(colormap))
shading interp
axis square
subplot(2,1,2)
plot(x,epsilon(:,Nx/2).^0.5)
saveas(gg,[folder_name sep_char 'fiberprofile'],'fig');
print(gg,[folder_name sep_char 'fiberprofile'],'-dpng');
close (gg)
% Actually do the calculation
field = 'scalar'; % See svmodes for details
boundary = '0000'; % See svmodes for details
t_justsolve = tic();
[phi1,neff1]=svmodes(lambda,guess,num_modes,dx,dx,epsilon,boundary,field);
toc(t_justsolve);
% Save each mode in a separate file
for ii=1:num_modes
gg=figure('Position',[1 1 1200 800]);
phi = phi1(:,:,ii);
neff = neff1(ii);
pcolor(x,x,phi)
shading interp
axis square
title(['n_{eff} = ' num2str(neff)])
% Save the file with identifying information
fname=[folder_name sep_char 'radius' num2str(radius) 'boundary' boundary 'field' field 'mode' num2str(ii) 'wavelength' num2str(round(lambda*1000))];
print(gg,fname,'-dpng')
save(fname,'x','phi','epsilon','neff')
close(gg)
end
end