forked from WiseLabAEP/GMMNLSE-Solver-FINAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalc_dispersion.m
148 lines (120 loc) · 5.26 KB
/
calc_dispersion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This script uses the propagation constants obtained from the mode
% calculations to approximate the dispersion parameters of each mode
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set parameters
Nf = 20; % number of frequency/wavelength grid points
lambda0_build = 1030e-9; % the center wavelength used to solve for the modes, in m
lambda0_disp = 1030e-9; % the center wavelength at which the dispersion parameters will be evaluated, in m
lrange = 180e-9; % wavelength range, in m. Should be the same as the range used to calculate the modes
modes_list=[1:6 15 28]; % modes selected for dispersion calculation (usually 1:num_modes, but can be different)
polynomial_fit_order = 5;
num_disp_orders = 4; % i.e. if this is 3, 4 coefficients will be calculated, including the 0th order
radius = 25; % needed to keep file names consistent
folder_name = 'Fibers/GRIN_1030'; % location to which files are saved
%% Load in the calculated effective n values
% filename and directory formatting based on whether machine is PC or not
if ispc
sep_char = '/';
else
sep_char = '\';
end
% Set the range in frequency space, which is more objective
c = 2.99792458e-4; % speed of light, in m/ps
if lrange == 0
error('Cannot calculate dispersion with only one frequency point');
else
f0 = c/lambda0_build; % center frequency in THz
frange = c/lambda0_build^2*lrange;
df = frange/Nf;
f = (f0 + (-Nf/2:Nf/2-1)*df)'; % frequencies in THz, as a column vector
l = c./f*10^6; % lambda in um
end
num_modes = length(modes_list);
field = 'scalar';
boundary = '0000';
lambda0_build = lambda0_build*10^6; % um
% Retrieve effective index values for each mode at each given wavelength
n_calc=zeros(Nf, num_modes);
for kk = 1:Nf
lambda=l(kk);
for ii=1:num_modes
fname=[folder_name sep_char 'radius' num2str(round(radius)) 'boundary' boundary 'field' field 'mode' num2str(modes_list(ii)) 'wavelength' num2str(round(lambda*1000))];
load([fname '.mat'])
n_calc(kk, ii)=neff;
end
fprintf('Loading lambda = %d um\n', round(lambda*1000));
end
%% Calculate the propagation constants
beta_calc = zeros(Nf, num_modes);
w=2*pi*f; % angular frequencies in 1/ps
for midx=1:num_modes
beta_calc(:, midx) = n_calc(:, midx).*w/c; % beta in 1/m
end
%% Fit the propagation constants to a polynomial and save the appropriate derivatives
dw = 2*pi*df;
w_disp = 2*pi*c/lambda0_disp; % angular frequency at which dispersion is calculated, in 1/ps
b_coefficients = zeros(num_modes, num_disp_orders+1); % The dispersion coefficients
for midx = 1:num_modes
beta_calc_i = beta_calc(:, midx);
beta_fit_last = polyfit(w, beta_calc_i, polynomial_fit_order); % the fit coefficients
b_coefficients(midx, 1) = polyval(beta_fit_last, w_disp)/1000; % Save beta_0 in 1/mm
for disp_order = 1:num_disp_orders
% The derivatives can be calculated exactly from the coefficients
beta_fit_last = ((polynomial_fit_order-(disp_order-1)):-1:1).*beta_fit_last(1:(polynomial_fit_order-(disp_order-1)));
b_coefficients(midx, disp_order+1) = polyval(beta_fit_last, w_disp)*(10^3)^disp_order/1000; % beta_n in fs^n/mm
end
end
% beta0 and beta1 should be relative to the fundamental mode.
b_coefficients(:, 1) = b_coefficients(:, 1) - ones(num_modes, 1)*b_coefficients(1, 1);
b_coefficients(:, 2) = b_coefficients(:, 2) - ones(num_modes, 1)*b_coefficients(1, 2);
betas = b_coefficients';
save([folder_name sep_char 'betas'], 'betas');
%% Display the results
% We need to use cell arrays because the higher orders are calculated from
% finite differences. This means that each order has one less data point
% than the previous one.
w_vectors = cell(num_disp_orders+1, 1); % omegas, in 1/ps
l_vectors = cell(num_disp_orders+1, 1); % lambdas, in um
w_vectors{1} = w;
l_vectors{1} = 2*pi*c./w_vectors{1}*10^6;
for disp_order = 1:num_disp_orders
w_prev = w_vectors{disp_order};
w_vectors{disp_order+1} = dw/2 + w_prev(1:length(w_prev)-1); % in 1/ps
l_vectors{disp_order+1} = 2*pi*c./w_vectors{disp_order+1}*10^6; % in um
end
% beta_full will have all of the orders, for each mode, as a function of
% wavelength
beta_full = cell(num_disp_orders+1, 1);
beta_full{1} = beta_calc/1000;
for disp_order = 1:num_disp_orders
beta_full{disp_order+1} = zeros(Nf-disp_order, num_modes);
end
% Take the differences to calculate the higher orders
for midx = 1:num_modes
for disp_order = 1:num_disp_orders
beta_full{disp_order+1}(:, midx) = diff(beta_full{disp_order}(:, midx))/dw*1000;
end
end
ggg=figure;
coo=hsv(num_modes);
ylabels = cell(num_disp_orders+1, 1);
ylabels{1} = '1/mm';
ylabels{2} = 'fs/mm';
for disp_order = 2:num_disp_orders
ylabels{disp_order+1} = ['fs^' num2str(disp_order) '/mm'];
end
% Plot all the results together
for disp_order = 1:num_disp_orders+1
subplot(1,num_disp_orders+1,disp_order)
hold on
for midx = 1:num_modes
plot(l_vectors{disp_order}, beta_full{disp_order}(:, midx), 'Color', coo(midx,:))
end
hold off
ylabel(ylabels{disp_order})
xlabel('\mum')
axis tight
end