diff --git a/uncertainties/core.py b/uncertainties/core.py index 8ed7d433..6e307282 100644 --- a/uncertainties/core.py +++ b/uncertainties/core.py @@ -19,6 +19,9 @@ from math import sqrt, log, isnan, isinf # Optimization: no attribute look-up import re import sys + +from uncertainties.formatting import format_ufloat, nrmlze_superscript + if sys.version_info < (3,): from past.builtins import basestring else: @@ -159,7 +162,7 @@ def correlated_values(nom_values, covariance_mat, tags=None): covariance_mat -- full covariance matrix of the returned numbers with uncertainties. For example, the first element of this matrix is the variance of the first number with uncertainty. This matrix must be a - NumPy array-like (list of lists, NumPy array, etc.). + NumPy array-like (list of lists, NumPy array, etc.). tags -- if 'tags' is not None, it must list the tag of each new independent variable. @@ -167,9 +170,9 @@ def correlated_values(nom_values, covariance_mat, tags=None): # !!! It would in principle be possible to handle 0 variance # variables by first selecting the sub-matrix that does not contain - # such variables (with the help of numpy.ix_()), and creating + # such variables (with the help of numpy.ix_()), and creating # them separately. - + std_devs = numpy.sqrt(numpy.diag(covariance_mat)) # For numerical stability reasons, we go through the correlation @@ -248,8 +251,8 @@ def correlated_values_norm(values_with_std_dev, correlation_mat, # The coordinates of each new uncertainty as a function of the # new variables must include the variable scale (standard deviation): - transform *= std_devs[:, numpy.newaxis] - + transform *= std_devs[:, numpy.newaxis] + # Representation of the initial correlated values: values_funcs = tuple( AffineScalarFunc( @@ -874,65 +877,6 @@ def le_on_aff_funcs(self, y_with_uncert): ######################################## -def first_digit(value): - ''' - Return the first digit position of the given value, as an integer. - - 0 is the digit just before the decimal point. Digits to the right - of the decimal point have a negative position. - - Return 0 for a null value. - ''' - try: - return int(math.floor(math.log10(abs(value)))) - except ValueError: # Case of value == 0 - return 0 - -def PDG_precision(std_dev): - ''' - Return the number of significant digits to be used for the given - standard deviation, according to the rounding rules of the - Particle Data Group (2010) - (http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf). - - Also returns the effective standard deviation to be used for - display. - ''' - - exponent = first_digit(std_dev) - - # The first three digits are what matters: we get them as an - # integer number in [100; 999). - # - # In order to prevent underflow or overflow when calculating - # 10**exponent, the exponent is slightly modified first and a - # factor to be applied after "removing" the new exponent is - # defined. - # - # Furthermore, 10**(-exponent) is not used because the exponent - # range for very small and very big floats is generally different. - if exponent >= 0: - # The -2 here means "take two additional digits": - (exponent, factor) = (exponent-2, 1) - else: - (exponent, factor) = (exponent+1, 1000) - digits = int(std_dev/10.**exponent*factor) # int rounds towards zero - - # Rules: - if digits <= 354: - return (2, std_dev) - elif digits <= 949: - return (1, std_dev) - else: - # The parentheses matter, for very small or very large - # std_dev: - return (2, 10.**exponent*(1000/factor)) - -# Definition of a basic (format specification only, no full-feature -# format string) formatting function that works whatever the version -# of Python. This function exists so that the more capable format() is -# used instead of the % formatting operator, if available: -robust_format = format class CallableStdDev(float): ''' @@ -949,552 +893,6 @@ def __call__ (self): ' anymore: use .std_dev instead of .std_dev().') return self -# Exponent letter: the keys are the possible main_fmt_type values of -# format_num(): -EXP_LETTERS = {'f': 'e', 'F': 'E'} - -def robust_align(orig_str, fill_char, align_option, width): - ''' - Aligns the given string with the given fill character. - - orig_str -- string to be aligned (str or unicode object). - - fill_char -- if empty, space is used. - - align_option -- as accepted by format(). - - wdith -- string that contains the width. - ''' - - # print "ALIGNING", repr(orig_str), "WITH", fill_char+align_option, - # print "WIDTH", width - - return format(orig_str, fill_char+align_option+width) - -# Maps some Unicode code points ("-", "+", and digits) to their -# superscript version: -TO_SUPERSCRIPT = { - 0x2b: u'⁺', - 0x2d: u'⁻', - 0x30: u'⁰', - 0x31: u'¹', - 0x32: u'²', - 0x33: u'³', - 0x34: u'⁴', - 0x35: u'⁵', - 0x36: u'⁶', - 0x37: u'⁷', - 0x38: u'⁸', - 0x39: u'⁹' - } - -# Inverted TO_SUPERSCRIPT table, for use with unicode.translate(): -# -#! Python 2.7+ can use a dictionary comprehension instead: -FROM_SUPERSCRIPT = { - ord(sup): normal for (normal, sup) in TO_SUPERSCRIPT.items()} - -def to_superscript(value): - ''' - Return a (Unicode) string with the given value as superscript characters. - - The value is formatted with the %d %-operator format. - - value -- integer. - ''' - - return (u'%d' % value).translate(TO_SUPERSCRIPT) - -def nrmlze_superscript(number_str): - ''' - Return a string with superscript digits transformed into regular digits. - - Non-superscript digits are not changed before the conversion. Thus, the - string can also contain regular digits. - - ValueError is raised if the conversion cannot be done. - - number_str -- string to be converted (of type str, but also possibly, for - Python 2, unicode, which allows this string to contain superscript digits). - ''' - # !! Python 3 doesn't need this str(), which is only here for giving the - # .translate() method to str objects in Python 2 (this str() comes - # from the builtins module of the future package and is therefore - # a subclass of unicode, in Python 2): - return int(str(number_str).translate(FROM_SUPERSCRIPT)) - -PM_SYMBOLS = {'pretty-print': u'±', 'latex': r' \pm ', 'default': '+/-'} - -# Multiplication symbol for pretty printing (so that pretty printing can -# be customized): -MULT_SYMBOLS = {'pretty-print': u'×', 'latex': r'\times'} - -# Function that transforms a numerical exponent produced by format_num() into -# the corresponding string notation (for non-default modes): -EXP_PRINT = { - 'pretty-print': lambda common_exp: u'%s10%s' % ( - MULT_SYMBOLS['pretty-print'], to_superscript(common_exp)), - 'latex': lambda common_exp: r' %s 10^{%d}' % ( - MULT_SYMBOLS['latex'], common_exp)} - -# Symbols used for grouping (typically between parentheses) in format_num(): -GROUP_SYMBOLS = { - 'pretty-print': ('(', ')'), - # Because of possibly exponents inside the parentheses (case of a - # specified field width), it is better to use auto-adjusting - # parentheses. This has the side effect of making the part between - # the parentheses non-breakable (the text inside parentheses in a - # LaTeX math expression $...$ can be broken). - 'latex': (r'\left(', r'\right)'), - 'default': ('(', ')') # Basic text mode - } - -def format_num(nom_val_main, error_main, common_exp, - fmt_parts, prec, main_pres_type, options): - u''' - Return a formatted number with uncertainty. - - Null errors (error_main) are displayed as the integer 0, with - no decimal point. - - The formatting can be customized globally through the PM_SYMBOLS, - MULT_SYMBOLS, GROUP_SYMBOLS and EXP_PRINT dictionaries, which contain - respectively the symbol for ±, for multiplication, for parentheses, and a - function that maps an exponent to something like "×10²" (using - MULT_SYMBOLS). - - Each of these dictionary has (at least) a 'pretty-print' and a 'latex' key, - that define the symbols to be used for these two output formats (the - PM_SYMBOLS and GROUP_SYMBOLS also have a 'default' key for the default - output format). For example, the defaults for the 'pretty-print' format - are: - - - PM_SYMBOLS['pretty-print'] = '±' - - MULT_SYMBOLS['pretty-print'] = '×' - - GROUP_SYMBOLS['pretty-print'] = ( '(', ')' ) - - EXP_PRINT['pretty-print']: see the source code. - - Arguments: - - nom_val_main, error_main -- nominal value and error, before using - common_exp (e.g., "1.23e2" would have a main value of 1.23; - similarly, "12.3+/-0.01" would have a main value of 12.3). - - common_exp -- common exponent to use. If None, no common exponent - is used. - - fmt_parts -- mapping that contains at least the following parts of - the format specification: fill, align, sign, zero, width, comma, - type; the value are strings. These format specification parts are - handled. The width is applied to each value, or, if the shorthand - notation is used, globally. If the error is special (zero, NaN, inf), - the parts are applied as much as possible to the nominal value. - - prec -- precision to use with the main_pres_type format type - (see below). - - main_pres_type -- format presentation type, either "f" or - "F". This defines how the mantissas, exponents and NaN/inf values are - represented (in the same way as for float). None, the empty - string, or "%" are not accepted. - - options -- options (as an object that support membership testing, like for - instance a string). "P" is for pretty-printing ("±" between the nominal - value and the error, superscript exponents, etc.). "L" is for a LaTeX - output. "S" is for the shorthand notation 1.23(1). "p" is for making sure - that the …±… part is surrounded by parentheses. "%" adds a final percent - sign, and parentheses if the shorthand notation is not used. Options can - be combined. The P option has priority over the L option (if both are - given). For details, see the documentation for - AffineScalarFunction.__format__(). - ''' - - # print (nom_val_main, error_main, common_exp, - # fmt_parts, prec, main_pres_type, options) - - # If a decimal point were always present in zero rounded errors - # that are not zero, the formatting would be difficult, in general - # (because the formatting options are very general): an example - # is'{:04.0f}'.format(0.1), which gives "0000" and would have to - # give "000.". Another example is '{:<4.0f}'.format(0.1), which - # gives "0 " but should give "0. ". This is cumbersome to - # implement in the general case, because no format prints "0." - # for 0. Furthermore, using the .0f format already brings the same - # kind of difficulty: non-zero numbers can appear as the exact - # integer zero, after rounding. The problem is not larger, for - # numbers with an error. - # - # That said, it is good to indicate null errors explicitly when - # possible: printing 3.1±0 with the default format prints 3.1+/-0, - # which shows that the uncertainty is exactly zero. - - # The suffix of the result is calculated first because it is - # useful for the width handling of the shorthand notation. - - # Printing type for parts of the result (exponent, parentheses), - # taking into account the priority of the pretty-print mode over - # the LaTeX mode. This setting does not apply to everything: for - # example, NaN is formatted as \mathrm{nan} (or NAN) if the LaTeX - # mode is required. - if 'P' in options: - print_type = 'pretty-print' - elif 'L' in options: - print_type = 'latex' - else: - print_type = 'default' - - # Exponent part: - if common_exp is None: - exp_str = '' - elif print_type == 'default': - # Case of e or E. The same convention as Python 2.7 - # to 3.3 is used for the display of the exponent: - exp_str = EXP_LETTERS[main_pres_type]+'%+03d' % common_exp - else: - exp_str = EXP_PRINT[print_type](common_exp) - - # Possible % sign: - percent_str = '' - if '%' in options: - if 'L' in options: - # % is a special character, in LaTeX: it must be escaped. - # - # Using '\\' in the code instead of r'\' so as not to - # confuse emacs's syntax highlighting: - percent_str += ' \\' - percent_str += '%' - - #################### - - # Only true if the error should not have an exponent (has priority - # over common_exp): - special_error = not error_main or isinfinite(error_main) - - # Nicer representation of the main nominal part, with no trailing - # zeros, when the error does not have a defined number of - # significant digits: - if special_error and fmt_parts['type'] in ('', 'g', 'G'): - # The main part is between 1 and 10 because any possible - # exponent is taken care of by common_exp, so it is - # formatted without an exponent (otherwise, the exponent - # would have to be handled for the LaTeX option): - fmt_suffix_n = (fmt_parts['prec'] or '')+fmt_parts['type'] - else: - fmt_suffix_n = '.%d%s' % (prec, main_pres_type) - - - # print "FMT_SUFFIX_N", fmt_suffix_n - - #################### - - # Calculation of the mostly final numerical part value_str (no % - # sign, no global width applied). - - # Error formatting: - - - if 'S' in options: # Shorthand notation: - - # Calculation of the uncertainty part, uncert_str: - - if error_main == 0: - # The error is exactly zero - uncert_str = '0' - elif isnan(error_main): - uncert_str = robust_format(error_main, main_pres_type) - if 'L' in options: - uncert_str = r'\mathrm{%s}' % uncert_str - elif isinf(error_main): - if 'L' in options: - uncert_str = r'\infty' - else: - uncert_str = robust_format(error_main, main_pres_type) - else: # Error with a meaningful first digit (not 0, and real number) - - uncert = round(error_main, prec) - - # The representation uncert_str of the uncertainty (which will - # be put inside parentheses) is calculated: - - # The uncertainty might straddle the decimal point: we - # keep it as it is, in this case (e.g. 1.2(3.4), as this - # makes the result easier to read); the shorthand - # notation then essentially coincides with the +/- - # notation: - if first_digit(uncert) >= 0 and prec > 0: - # This case includes a zero rounded error with digits - # after the decimal point: - uncert_str = '%.*f' % (prec, uncert) - - else: - if uncert: - # The round is important because 566.99999999 can - # first be obtained when 567 is wanted (%d prints the - # integer part, not the rounded value): - uncert_str = '%d' % round(uncert*10.**prec) - else: - # The decimal point indicates a truncated float - # (this is easy to do, in this case, since - # fmt_prefix_e is ignored): - uncert_str = '0.' - - # End of the final number representation (width and alignment - # not included). This string is important for the handling of - # the width: - value_end = '(%s)%s%s' % (uncert_str, exp_str, percent_str) - any_exp_factored = True # Single exponent in the output - - ########## - # Nominal value formatting: - - # Calculation of fmt_prefix_n (prefix for the format of the - # main part of the nominal value): - - if fmt_parts['zero'] and fmt_parts['width']: - - # Padding with zeros must be done on the nominal value alone: - - # Remaining width (for the nominal value): - nom_val_width = max(int(fmt_parts['width']) - len(value_end), 0) - fmt_prefix_n = '%s%s%d%s' % ( - fmt_parts['sign'], fmt_parts['zero'], nom_val_width, - fmt_parts['comma']) - - else: - # Any 'zero' part should not do anything: it is not - # included - fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] - - # print "FMT_PREFIX_N", fmt_prefix_n - # print "FMT_SUFFIX_N", fmt_suffix_n - - nom_val_str = robust_format(nom_val_main, fmt_prefix_n+fmt_suffix_n) - - ########## - # Overriding of nom_val_str for LaTeX,; possibly based on the - # existing value (for NaN vs nan): - if 'L' in options: - - if isnan(nom_val_main): - nom_val_str = r'\mathrm{%s}' % nom_val_str - elif isinf(nom_val_main): - # !! It is wasteful, in this case, to replace - # nom_val_str: could this be avoided while avoiding to - # duplicate the formula for nom_val_str for the common - # case (robust_format(...))? - nom_val_str = r'%s\infty' % ('-' if nom_val_main < 0 else '') - - value_str = nom_val_str+value_end - - # Global width, if any: - - if fmt_parts['width']: # An individual alignment is needed: - - # Default alignment, for numbers: to the right (if no - # alignment is specified, a string is aligned to the - # left): - value_str = robust_align( - value_str, fmt_parts['fill'], fmt_parts['align'] or '>', - fmt_parts['width']) - - else: # +/- notation: - - # The common exponent is factored or not, depending on the - # width. This gives nice columns for the nominal values and - # the errors (no shift due to a varying exponent), when a need - # is given: - any_exp_factored = not fmt_parts['width'] - - # True when the error part has any exponent directly attached - # (case of an individual exponent for both the nominal value - # and the error, when the error is a non-0, real number). - # The goal is to avoid the strange notation nane-10, and to - # avoid the 0e10 notation for an exactly zero uncertainty, - # because .0e can give this for a non-zero error (the goal is - # to have a zero uncertainty be very explicit): - error_has_exp = not any_exp_factored and not special_error - - # Like error_has_exp, but only for real number handling - # (there is no special meaning to a zero nominal value): - nom_has_exp = not any_exp_factored and not isinfinite(nom_val_main) - - # Prefix for the parts: - if fmt_parts['width']: # Individual widths - - # If zeros are needed, then the width is taken into - # account now (before the exponent is added): - if fmt_parts['zero']: - - width = int(fmt_parts['width']) - - # Remaining (minimum) width after including the - # exponent: - remaining_width = max(width-len(exp_str), 0) - - fmt_prefix_n = '%s%s%d%s' % ( - fmt_parts['sign'], fmt_parts['zero'], - remaining_width if nom_has_exp else width, - fmt_parts['comma']) - - fmt_prefix_e = '%s%d%s' % ( - fmt_parts['zero'], - remaining_width if error_has_exp else width, - fmt_parts['comma']) - - else: - fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] - fmt_prefix_e = fmt_parts['comma'] - - else: # Global width - fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] - fmt_prefix_e = fmt_parts['comma'] - - ## print "ANY_EXP_FACTORED", any_exp_factored - ## print "ERROR_HAS_EXP", error_has_exp - ## print "NOM_HAS_EXP", nom_has_exp - - #################### - # Nominal value formatting: - - # !! The following fails with Python < 2.6 when the format is - # not accepted by the % operator. This can happen when - # special_error is true, as the format used for the nominal - # value is essentially the format provided by the user, which - # may be empty: - - # print "FMT_PREFIX_N", fmt_prefix_n - # print "FMT_SUFFIX_N", fmt_suffix_n - - nom_val_str = robust_format(nom_val_main, fmt_prefix_n+fmt_suffix_n) - - # print "NOM_VAL_STR", nom_val_str - - #################### - # Error formatting: - - # !! Note: .0f applied to a float has no decimal point, but - # this does not appear to be documented - # (http://docs.python.org/2/library/string.html#format-specification-mini-language). This - # feature is used anyway, because it allows a possible comma - # format parameter to be handled more conveniently than if the - # 'd' format was used. - # - # The following uses a special integer representation of a - # zero uncertainty: - if error_main: - # The handling of NaN/inf in the nominal value identical to - # the handling of NaN/inf in the standard deviation: - if (isinfinite(nom_val_main) - # Only some formats have a nicer representation: - and fmt_parts['type'] in ('', 'g', 'G')): - # The error can be formatted independently: - fmt_suffix_e = (fmt_parts['prec'] or '')+fmt_parts['type'] - else: - fmt_suffix_e = '.%d%s' % (prec, main_pres_type) - else: - fmt_suffix_e = '.0%s' % main_pres_type - - error_str = robust_format(error_main, fmt_prefix_e+fmt_suffix_e) - - ########## - # Overriding of nom_val_str and error_str for LaTeX: - if 'L' in options: - - if isnan(nom_val_main): - nom_val_str = r'\mathrm{%s}' % nom_val_str - elif isinf(nom_val_main): - nom_val_str = r'%s\infty' % ('-' if nom_val_main < 0 else '') - - if isnan(error_main): - error_str = r'\mathrm{%s}' % error_str - elif isinf(error_main): - error_str = r'\infty' - - if nom_has_exp: - nom_val_str += exp_str - if error_has_exp: - error_str += exp_str - - #################### - # Final alignment of each field, if needed: - - if fmt_parts['width']: # An individual alignment is needed: - - # Default alignment, for numbers: to the right (if no - # alignment is specified, a string is aligned to the - # left): - effective_align = fmt_parts['align'] or '>' - - # robust_format() is used because it may handle alignment - # options, where the % operator does not: - - nom_val_str = robust_align( - nom_val_str, fmt_parts['fill'], effective_align, - fmt_parts['width']) - - error_str = robust_align( - error_str, fmt_parts['fill'], effective_align, - fmt_parts['width']) - - #################### - pm_symbol = PM_SYMBOLS[print_type] # Shortcut - - #################### - - # Construction of the final value, value_str, possibly with - # grouping (typically inside parentheses): - - (LEFT_GROUPING, RIGHT_GROUPING) = GROUP_SYMBOLS[print_type] - - # The nominal value and the error might have to be explicitly - # grouped together with parentheses, so as to prevent an - # ambiguous notation. This is done in parallel with the - # percent sign handling because this sign may too need - # parentheses. - if any_exp_factored and common_exp is not None: # Exponent - value_str = ''.join(( - LEFT_GROUPING, - nom_val_str, pm_symbol, error_str, - RIGHT_GROUPING, - exp_str, percent_str)) - else: # No exponent - value_str = ''.join([nom_val_str, pm_symbol, error_str]) - if percent_str: - value_str = ''.join(( - LEFT_GROUPING, value_str, RIGHT_GROUPING, percent_str)) - elif 'p' in options: - value_str = ''.join((LEFT_GROUPING, value_str, RIGHT_GROUPING)) - - return value_str - -def signif_dgt_to_limit(value, num_signif_d): - ''' - Return the precision limit necessary to display value with - num_signif_d significant digits. - - The precision limit is given as -1 for 1 digit after the decimal - point, 0 for integer rounding, etc. It can be positive. - ''' - - fst_digit = first_digit(value) - - limit_no_rounding = fst_digit-num_signif_d+1 - - # The number of significant digits of the uncertainty, when - # rounded at this limit_no_rounding level, can be too large by 1 - # (e.g., with num_signif_d = 1, 0.99 gives limit_no_rounding = -1, but - # the rounded value at that limit is 1.0, i.e. has 2 - # significant digits instead of num_signif_d = 1). We correct for - # this effect by adjusting limit if necessary: - rounded = round(value, -limit_no_rounding) - fst_digit_rounded = first_digit(rounded) - - if fst_digit_rounded > fst_digit: - # The rounded limit is fst_digit_rounded-num_signif_d+1; - # but this can only be 1 above the non-rounded limit: - limit_no_rounding += 1 - - return limit_no_rounding class LinearCombination(object): """ @@ -1875,474 +1273,7 @@ def __str__(self): return self.format('') def __format__(self, format_spec): - ''' - Formats a number with uncertainty. - - The format specification are the same as for format() for - floats, as defined for Python 2.6+ (restricted to what the % - operator accepts, if using an earlier version of Python), - except that the n presentation type is not supported. In - particular, the usual precision, alignment, sign flag, - etc. can be used. The behavior of the various presentation - types (e, f, g, none, etc.) is similar. Moreover, the format - is extended: the number of digits of the uncertainty can be - controlled, as is the way the uncertainty is indicated (with - +/- or with the short-hand notation 3.14(1), in LaTeX or with - a simple text string,...). - - Beyond the use of options at the end of the format - specification, the main difference with floats is that a "u" - just before the presentation type (f, e, g, none, etc.) - activates the "uncertainty control" mode (e.g.: ".6u"). This - mode is also activated when not using any explicit precision - (e.g.: "g", "10f", "+010,e" format specifications). If the - uncertainty does not have a meaningful number of significant - digits (0 and NaN uncertainties), this mode is automatically - deactivated. - - The nominal value and the uncertainty always use the same - precision. This implies trailing zeros, in general, even with - the g format type (contrary to the float case). However, when - the number of significant digits of the uncertainty is not - defined (zero or NaN uncertainty), it has no precision, so - there is no matching. In this case, the original format - specification is used for the nominal value (any "u" is - ignored). - - Any precision (".p", where p is a number) is interpreted (if - meaningful), in the uncertainty control mode, as indicating - the number p of significant digits of the displayed - uncertainty. Example: .1uf will return a string with one - significant digit in the uncertainty (and no exponent). - - If no precision is given, the rounding rules from the - Particle Data Group are used, if possible - (http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf). For - example, the "f" format specification generally does not use - the default 6 digits after the decimal point, but applies the - PDG rules. - - A common exponent is used if an exponent is needed for the - larger of the nominal value (in absolute value) and the - standard deviation, unless this would result in a zero - uncertainty being represented as 0e... or a NaN uncertainty as - NaNe.... Thanks to this common exponent, the quantity that - best describes the associated probability distribution has a - mantissa in the usual 1-10 range. The common exponent is - factored (as in "(1.2+/-0.1)e-5"). unless the format - specification contains an explicit width (" 1.2e-5+/- 0.1e-5") - (this allows numbers to be in a single column, when printing - numbers over many lines). Specifying a minimum width of 1 is a - way of forcing any common exponent to not be factored out. - - The fill, align, zero and width parameters of the format - specification are applied individually to each of the nominal - value and standard deviation or, if the shorthand notation is - used, globally. - - The sign parameter of the format specification is only applied - to the nominal value (since the standard deviation is - positive). - - In the case of a non-LaTeX output, the returned string can - normally be parsed back with ufloat_fromstr(). This however - excludes cases where numbers use the "," thousands separator, - for example. - - Options can be added, at the end of the format - specification. Multiple options can be specified: - - - When "P" is present, the pretty-printing mode is activated: "±" - separates the nominal value from the standard deviation, exponents - use superscript characters, etc. - - When "S" is present (like in .1uS), the short-hand notation 1.234(5) - is used, indicating an uncertainty on the last digits; if the digits - of the uncertainty straddle the decimal point, it uses a fixed-point - notation, like in 12.3(4.5). - - When "L" is present, the output is formatted with LaTeX. - - "p" ensures that there are parentheses around the …±… part (no - parentheses are added if some are already present, for instance - because of an exponent or of a trailing % sign, etc.). This produces - outputs like (1.0±0.2) or (1.0±0.2)e7, which can be useful for - removing any ambiguity if physical units are added after the printed - number. - - An uncertainty which is exactly zero is represented as the - integer 0 (i.e. with no decimal point). - - The "%" format type forces the percent sign to be at the end - of the returned string (it is not attached to each of the - nominal value and the standard deviation). - - Some details of the formatting can be customized as described - in format_num(). - ''' - - # Convention on limits "between" digits: 0 = exactly at the - # decimal point, -1 = after the first decimal, 1 = before the - # units digit, etc. - - # Convention on digits: 0 is units (10**0), 1 is tens, -1 is - # tenths, etc. - - # This method does the format specification parsing, and - # calculates the various parts of the displayed value - # (mantissas, exponent, position of the last digit). The - # formatting itself is delegated to format_num(). - - ######################################## - - # Format specification parsing: - - match = re.match(r''' - (?P[^{}]??)(?P[<>=^]?) # fill cannot be { or } - (?P[-+ ]?) - (?P0?) - (?P\d*) - (?P,?) - (?:\.(?P\d+))? - (?Pu?) # Precision for the uncertainty? - # The type can be omitted. Options must not go here: - (?P[eEfFgG%]??) # n not supported - (?P[PSLp]*) # uncertainties-specific flags - $''', - format_spec, - re.VERBOSE) - - # Does the format specification look correct? - if not match: - raise ValueError( - 'Format specification %r cannot be used with object of type' - ' %r. Note that uncertainties-specific flags must be put at' - ' the end of the format string.' - # Sub-classes handled: - % (format_spec, self.__class__.__name__)) - - # Effective format presentation type: f, e, g, etc., or None, - # like in - # https://docs.python.org/3.4/library/string.html#format-specification-mini-language. Contrary - # to what is written in the documentation, it is not true that - # None is "the same as 'g'": "{}".format() and "{:g}" do not - # give the same result, on 31415000000.0. None is thus kept as - # is instead of being replaced by "g". - pres_type = match.group('type') or None - - # Shortcut: - fmt_prec = match.group('prec') # Can be None - - ######################################## - - # Since the '%' (percentage) format specification can change - # the value to be displayed, this value must first be - # calculated. Calculating the standard deviation is also an - # optimization: the standard deviation is generally - # calculated: it is calculated only once, here: - nom_val = self.nominal_value - std_dev = self.std_dev - - # 'options' is the options that must be given to format_num(): - options = set(match.group('options')) - - ######################################## - - # The '%' format is treated internally as a display option: it - # should not be applied individually to each part: - if pres_type == '%': - # Because '%' does 0.0055*100, the value - # 0.5499999999999999 is obtained, which rounds to 0.5. The - # original rounded value is 0.006. The same behavior is - # found in Python 2.7: '{:.1%}'.format(0.0055) is '0.5%'. - # If a different behavior is needed, a solution to this - # problem would be to do the rounding before the - # multiplication. - std_dev *= 100 - nom_val *= 100 - pres_type = 'f' - options.add('%') - - # At this point, pres_type is in eEfFgG or None (not %). - - ######################################## - - # Non-real values (nominal value or standard deviation) must - # be handled in a specific way: - real_values = [value for value in [abs(nom_val), std_dev] - if not isinfinite(value)] - - # Calculation of digits_limit, which defines the precision of - # the nominal value and of the standard deviation (it can be - # None when it does not matter, like for NaN±NaN): - - # Reference value for the calculation of a possible exponent, - # if needed: - if pres_type in (None, 'e', 'E', 'g', 'G'): - # Reference value for the exponent: the largest value - # defines what the exponent will be (another convention - # could have been chosen, like using the exponent of the - # nominal value, irrespective of the standard deviation): - try: - exp_ref_value = max(real_values) - except ValueError: # No non-NaN value: NaN±NaN… - # No meaningful common exponent can be obtained: - pass - ## else: - ## print "EXP_REF_VAL", exp_ref_value - - # Should the precision be interpreted like for a float, or - # should the number of significant digits on the uncertainty - # be controlled? - if (( - # Default behavior: number of significant digits on the - # uncertainty controlled (if useful, i.e. only in - # situations where the nominal value and the standard - # error digits are truncated at the same place): - (not fmt_prec and len(real_values)==2) - or match.group('uncert_prec')) # Explicit control - # The number of significant digits of the uncertainty must - # be meaningful, otherwise the position of the significant - # digits of the uncertainty does not have a clear - # meaning. This gives us the *effective* uncertainty - # control mode: - and std_dev - and not isinfinite(std_dev)): - - # The number of significant digits on the uncertainty is - # controlled. - - # The limit digits_limit on the digits of nom_val and std_dev - # to be displayed is calculated. If the exponent notation is - # used, this limit is generally different from the finally - # displayed limit (e.g. 314.15+/-0.01 has digits_limit=-2, but - # will be displayed with an exponent as (3.1415+/-0.0001)e+02, - # which corresponds to 4 decimals after the decimal point, not - # 2). - - # Number of significant digits to use: - if fmt_prec: - num_signif_d = int(fmt_prec) # Can only be non-negative - if not num_signif_d: - raise ValueError("The number of significant digits" - " on the uncertainty should be positive") - else: - (num_signif_d, std_dev) = PDG_precision(std_dev) - - digits_limit = signif_dgt_to_limit(std_dev, num_signif_d) - - else: - - # No control of the number of significant digits on the - # uncertainty. - - ## print "PRECISION NOT BASED ON UNCERTAINTY" - - # The precision has the same meaning as for floats (it is - # not the uncertainty that defines the number of digits). - - # The usual default precision is used (this is useful for - # 3.141592±NaN with an "f" format specification, for - # example): - # - # prec is the precision for the main parts of the final - # format (in the sense of float formatting): - # - # https://docs.python.org/3.4/library/string.html#format-specification-mini-language - if fmt_prec: - prec = int(fmt_prec) - elif pres_type is None: - prec = 12 - else: - prec = 6 - - if pres_type in ('f', 'F'): - - digits_limit = -prec - - else: # Format type in None, eEgG - - # We first calculate the number of significant digits - # to be displayed (if possible): - - if pres_type in ('e', 'E'): - # The precision is the number of significant - # digits required - 1 (because there is a single - # digit before the decimal point, which is not - # included in the definition of the precision with - # the e/E format type): - num_signif_digits = prec+1 - - else: # Presentation type in None, g, G - - # Effective format specification precision: the rule - # of - # http://docs.python.org/2.7/library/string.html#format-specification-mini-language - # is used: - - # The final number of significant digits to be - # displayed is not necessarily obvious: trailing - # zeros are removed (with the gG presentation - # type), so num_signif_digits is the number of - # significant digits if trailing zeros were not - # removed. This quantity is relevant for the - # rounding implied by the exponent test of the g/G - # format: - - # 0 is interpreted like 1 (as with floats with a - # gG presentation type): - num_signif_digits = prec or 1 - - # The number of significant digits is important for - # example for determining the exponent: - - ## print "NUM_SIGNIF_DIGITS", num_signif_digits - - digits_limit = ( - signif_dgt_to_limit(exp_ref_value, num_signif_digits) - if real_values - else None) - - ## print "DIGITS_LIMIT", digits_limit - - ####################################### - - # Common exponent notation: should it be used? use_exp is set - # accordingly. If a common exponent should be used (use_exp is - # True), 'common_exp' is set to the exponent that should be - # used. - - if pres_type in ('f', 'F'): - use_exp = False - elif pres_type in ('e', 'E'): - if not real_values: - use_exp = False - else: - use_exp = True - # !! This calculation might have been already done, - # for instance when using the .0e format: - # signif_dgt_to_limit() was called before, which - # prompted a similar calculation: - common_exp = first_digit(round(exp_ref_value, -digits_limit)) - - else: # None, g, G - - # The rules from - # https://docs.python.org/3.4/library/string.html#format-specification-mini-language - # are applied. - - # Python's native formatting (whose result could be parsed - # in order to determine whether a common exponent should - # be used) is not used because there is shared information - # between the nominal value and the standard error (same - # last digit, common exponent) and extracting this - # information from Python would entail parsing its - # formatted string, which is in principle inefficient - # (internally, Python performs calculations that yield a - # string, and the string would be parsed back into - # separate parts and numbers, which is in principle - # unnecessary). - - # Should the scientific notation be used? The same rule as - # for floats is used ("-4 <= exponent of rounded value < - # p"), on the nominal value. - - if not real_values: - use_exp = False - else: - # Common exponent *if* used: - common_exp = first_digit(round(exp_ref_value, -digits_limit)) - - # print "COMMON EXP TEST VALUE", common_exp - # print "LIMIT EXP", common_exp-digits_limit+1 - # print "WITH digits_limit", digits_limit - - # The number of significant digits of the reference value - # rounded at digits_limit is exponent-digits_limit+1: - if -4 <= common_exp < common_exp-digits_limit+1: - use_exp = False - else: - use_exp = True - - ######################################## - - # Calculation of signif_limit (position of the significant - # digits limit in the final fixed point representations; this - # is either a non-positive number, or None), of - # nom_val_mantissa ("mantissa" for the nominal value, - # i.e. value possibly corrected for a factorized exponent), - # and std_dev_mantissa (similarly for the standard - # deviation). common_exp is also set to None if no common - # exponent should be used. - - if use_exp: - - # Not 10.**(-common_exp), for limit values of common_exp: - factor = 10.**common_exp - - nom_val_mantissa = nom_val/factor - std_dev_mantissa = std_dev/factor - # Limit for the last digit of the mantissas: - signif_limit = digits_limit - common_exp - - else: # No common exponent - - common_exp = None - - nom_val_mantissa = nom_val - std_dev_mantissa = std_dev - signif_limit = digits_limit - - ## print "SIGNIF_LIMIT", signif_limit - - ######################################## - - # Format of the main (i.e. with no exponent) parts (the None - # presentation type is similar to the g format type): - - main_pres_type = 'fF'[(pres_type or 'g').isupper()] - - # The precision of the main parts must be adjusted so as - # to take into account the special role of the decimal - # point: - if signif_limit is not None: # If signif_limit is pertinent - # The decimal point location is always included in the - # printed digits (e.g., printing 3456 with only 2 - # significant digits requires to print at least four - # digits, like in 3456 or 3500). - # - # The max() is important for example for - # 1234567.89123+/-12345.678 with the f format: in this - # case, signif_limit is +3 (2 significant digits necessary - # for the error, as per the PDG rules), but the (Python - # float formatting) precision to be used for the main - # parts is 0 (all digits must be shown). - # - # The 1 for the None pres_type represents "at least one - # digit past the decimal point" of Python - # (https://docs.python.org/3.4/library/string.html#format-specification-mini-language). This - # is only applied for null uncertainties. - prec = max(-signif_limit, - 1 if pres_type is None and not std_dev - else 0) - ## print "PREC", prec - - ######################################## - - # print ( - # "FORMAT_NUM parameters: nom_val_mantissa={}," - # " std_dev_mantissa={}, common_exp={}," - # " match.groupdict()={}, prec={}, main_pres_type={}," - # " options={}".format( - # nom_val_mantissa, std_dev_mantissa, common_exp, - # match.groupdict(), - # prec, - # main_pres_type, - # options)) - - # Final formatting: - return format_num(nom_val_mantissa, std_dev_mantissa, common_exp, - match.groupdict(), - prec=prec, - main_pres_type=main_pres_type, - options=options) + return format_ufloat(self, format_spec) # Alternate name for __format__, for use with Python < 2.6 (and # other Python versions if the user so chooses: this helps moving @@ -3016,7 +1947,7 @@ def parse_error_in_parentheses(representation): The digits between parentheses correspond to the same number of digits at the end of the nominal value (the decimal point in the uncertainty is optional). Example: 12.34(142) = 12.34±1.42. - + Raises ValueError if the string cannot be parsed. """ diff --git a/uncertainties/formatting.py b/uncertainties/formatting.py new file mode 100644 index 00000000..ee601e43 --- /dev/null +++ b/uncertainties/formatting.py @@ -0,0 +1,1108 @@ +from math import isinf, isnan +import math +import re +import warnings + + +def deprecation(message): + ''' + Warn the user with the given message, by issuing a + DeprecationWarning. + ''' + # TODO: This was copied from core.py to avoid a circular import. This should be + # pulled into a shared "utilities" module or similar. + + # stacklevel = 3 points to the original user call (not to the + # function from this module that called deprecation()). + # DeprecationWarning is ignored by default: not used. + + warnings.warn('Obsolete: %s Code can be automatically updated with' + ' python -m uncertainties.1to2 -w ProgramDirectory.' + % message, stacklevel=3) + + +def isinfinite(x): + # TODO: Usages of this function should be replaced with not math.isfinite. + return isinf(x) or isnan(x) + + +def first_digit(value): + ''' + Return the first digit position of the given value, as an integer. + + 0 is the digit just before the decimal point. Digits to the right + of the decimal point have a negative position. + + Return 0 for a null value. + ''' + try: + return int(math.floor(math.log10(abs(value)))) + except ValueError: # Case of value == 0 + return 0 + + +def PDG_precision(std_dev): + ''' + Return the number of significant digits to be used for the given + standard deviation, according to the rounding rules of the + Particle Data Group (2010) + (http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf). + + Also returns the effective standard deviation to be used for + display. + ''' + + exponent = first_digit(std_dev) + + # The first three digits are what matters: we get them as an + # integer number in [100; 999). + # + # In order to prevent underflow or overflow when calculating + # 10**exponent, the exponent is slightly modified first and a + # factor to be applied after "removing" the new exponent is + # defined. + # + # Furthermore, 10**(-exponent) is not used because the exponent + # range for very small and very big floats is generally different. + if exponent >= 0: + # The -2 here means "take two additional digits": + (exponent, factor) = (exponent-2, 1) + else: + (exponent, factor) = (exponent+1, 1000) + digits = int(std_dev/10.**exponent*factor) # int rounds towards zero + + # Rules: + if digits <= 354: + return (2, std_dev) + elif digits <= 949: + return (1, std_dev) + else: + # The parentheses matter, for very small or very large + # std_dev: + return (2, 10.**exponent*(1000/factor)) + + +# Definition of a basic (format specification only, no full-feature +# format string) formatting function that works whatever the version +# of Python. This function exists so that the more capable format() is +# used instead of the % formatting operator, if available: +robust_format = format + + +# Exponent letter: the keys are the possible main_fmt_type values of +# format_num(): +EXP_LETTERS = {'f': 'e', 'F': 'E'} + +def robust_align(orig_str, fill_char, align_option, width): + ''' + Aligns the given string with the given fill character. + + orig_str -- string to be aligned (str or unicode object). + + fill_char -- if empty, space is used. + + align_option -- as accepted by format(). + + wdith -- string that contains the width. + ''' + + # print "ALIGNING", repr(orig_str), "WITH", fill_char+align_option, + # print "WIDTH", width + + return format(orig_str, fill_char+align_option+width) + +# Maps some Unicode code points ("-", "+", and digits) to their +# superscript version: +TO_SUPERSCRIPT = { + 0x2b: u'⁺', + 0x2d: u'⁻', + 0x30: u'⁰', + 0x31: u'¹', + 0x32: u'²', + 0x33: u'³', + 0x34: u'⁴', + 0x35: u'⁵', + 0x36: u'⁶', + 0x37: u'⁷', + 0x38: u'⁸', + 0x39: u'⁹' + } + +# Inverted TO_SUPERSCRIPT table, for use with unicode.translate(): +# +#! Python 2.7+ can use a dictionary comprehension instead: +FROM_SUPERSCRIPT = { + ord(sup): normal for (normal, sup) in TO_SUPERSCRIPT.items()} + +def to_superscript(value): + ''' + Return a (Unicode) string with the given value as superscript characters. + + The value is formatted with the %d %-operator format. + + value -- integer. + ''' + + return (u'%d' % value).translate(TO_SUPERSCRIPT) + +def nrmlze_superscript(number_str): + ''' + Return a string with superscript digits transformed into regular digits. + + Non-superscript digits are not changed before the conversion. Thus, the + string can also contain regular digits. + + ValueError is raised if the conversion cannot be done. + + number_str -- string to be converted (of type str, but also possibly, for + Python 2, unicode, which allows this string to contain superscript digits). + ''' + # !! Python 3 doesn't need this str(), which is only here for giving the + # .translate() method to str objects in Python 2 (this str() comes + # from the builtins module of the future package and is therefore + # a subclass of unicode, in Python 2): + return int(str(number_str).translate(FROM_SUPERSCRIPT)) + +PM_SYMBOLS = {'pretty-print': u'±', 'latex': r' \pm ', 'default': '+/-'} + +# Multiplication symbol for pretty printing (so that pretty printing can +# be customized): +MULT_SYMBOLS = {'pretty-print': u'×', 'latex': r'\times'} + +# Function that transforms a numerical exponent produced by format_num() into +# the corresponding string notation (for non-default modes): +EXP_PRINT = { + 'pretty-print': lambda common_exp: u'%s10%s' % ( + MULT_SYMBOLS['pretty-print'], to_superscript(common_exp)), + 'latex': lambda common_exp: r' %s 10^{%d}' % ( + MULT_SYMBOLS['latex'], common_exp)} + +# Symbols used for grouping (typically between parentheses) in format_num(): +GROUP_SYMBOLS = { + 'pretty-print': ('(', ')'), + # Because of possibly exponents inside the parentheses (case of a + # specified field width), it is better to use auto-adjusting + # parentheses. This has the side effect of making the part between + # the parentheses non-breakable (the text inside parentheses in a + # LaTeX math expression $...$ can be broken). + 'latex': (r'\left(', r'\right)'), + 'default': ('(', ')') # Basic text mode + } + +def format_num(nom_val_main, error_main, common_exp, + fmt_parts, prec, main_pres_type, options): + u''' + Return a formatted number with uncertainty. + + Null errors (error_main) are displayed as the integer 0, with + no decimal point. + + The formatting can be customized globally through the PM_SYMBOLS, + MULT_SYMBOLS, GROUP_SYMBOLS and EXP_PRINT dictionaries, which contain + respectively the symbol for ±, for multiplication, for parentheses, and a + function that maps an exponent to something like "×10²" (using + MULT_SYMBOLS). + + Each of these dictionary has (at least) a 'pretty-print' and a 'latex' key, + that define the symbols to be used for these two output formats (the + PM_SYMBOLS and GROUP_SYMBOLS also have a 'default' key for the default + output format). For example, the defaults for the 'pretty-print' format + are: + + - PM_SYMBOLS['pretty-print'] = '±' + - MULT_SYMBOLS['pretty-print'] = '×' + - GROUP_SYMBOLS['pretty-print'] = ( '(', ')' ) + - EXP_PRINT['pretty-print']: see the source code. + + Arguments: + + nom_val_main, error_main -- nominal value and error, before using + common_exp (e.g., "1.23e2" would have a main value of 1.23; + similarly, "12.3+/-0.01" would have a main value of 12.3). + + common_exp -- common exponent to use. If None, no common exponent + is used. + + fmt_parts -- mapping that contains at least the following parts of + the format specification: fill, align, sign, zero, width, comma, + type; the value are strings. These format specification parts are + handled. The width is applied to each value, or, if the shorthand + notation is used, globally. If the error is special (zero, NaN, inf), + the parts are applied as much as possible to the nominal value. + + prec -- precision to use with the main_pres_type format type + (see below). + + main_pres_type -- format presentation type, either "f" or + "F". This defines how the mantissas, exponents and NaN/inf values are + represented (in the same way as for float). None, the empty + string, or "%" are not accepted. + + options -- options (as an object that support membership testing, like for + instance a string). "P" is for pretty-printing ("±" between the nominal + value and the error, superscript exponents, etc.). "L" is for a LaTeX + output. "S" is for the shorthand notation 1.23(1). "p" is for making sure + that the …±… part is surrounded by parentheses. "%" adds a final percent + sign, and parentheses if the shorthand notation is not used. Options can + be combined. The P option has priority over the L option (if both are + given). For details, see the documentation for + AffineScalarFunction.__format__(). + ''' + + # print (nom_val_main, error_main, common_exp, + # fmt_parts, prec, main_pres_type, options) + + # If a decimal point were always present in zero rounded errors + # that are not zero, the formatting would be difficult, in general + # (because the formatting options are very general): an example + # is'{:04.0f}'.format(0.1), which gives "0000" and would have to + # give "000.". Another example is '{:<4.0f}'.format(0.1), which + # gives "0 " but should give "0. ". This is cumbersome to + # implement in the general case, because no format prints "0." + # for 0. Furthermore, using the .0f format already brings the same + # kind of difficulty: non-zero numbers can appear as the exact + # integer zero, after rounding. The problem is not larger, for + # numbers with an error. + # + # That said, it is good to indicate null errors explicitly when + # possible: printing 3.1±0 with the default format prints 3.1+/-0, + # which shows that the uncertainty is exactly zero. + + # The suffix of the result is calculated first because it is + # useful for the width handling of the shorthand notation. + + # Printing type for parts of the result (exponent, parentheses), + # taking into account the priority of the pretty-print mode over + # the LaTeX mode. This setting does not apply to everything: for + # example, NaN is formatted as \mathrm{nan} (or NAN) if the LaTeX + # mode is required. + if 'P' in options: + print_type = 'pretty-print' + elif 'L' in options: + print_type = 'latex' + else: + print_type = 'default' + + # Exponent part: + if common_exp is None: + exp_str = '' + elif print_type == 'default': + # Case of e or E. The same convention as Python 2.7 + # to 3.3 is used for the display of the exponent: + exp_str = EXP_LETTERS[main_pres_type]+'%+03d' % common_exp + else: + exp_str = EXP_PRINT[print_type](common_exp) + + # Possible % sign: + percent_str = '' + if '%' in options: + if 'L' in options: + # % is a special character, in LaTeX: it must be escaped. + # + # Using '\\' in the code instead of r'\' so as not to + # confuse emacs's syntax highlighting: + percent_str += ' \\' + percent_str += '%' + + #################### + + # Only true if the error should not have an exponent (has priority + # over common_exp): + special_error = not error_main or isinfinite(error_main) + + # Nicer representation of the main nominal part, with no trailing + # zeros, when the error does not have a defined number of + # significant digits: + if special_error and fmt_parts['type'] in ('', 'g', 'G'): + # The main part is between 1 and 10 because any possible + # exponent is taken care of by common_exp, so it is + # formatted without an exponent (otherwise, the exponent + # would have to be handled for the LaTeX option): + fmt_suffix_n = (fmt_parts['prec'] or '')+fmt_parts['type'] + else: + fmt_suffix_n = '.%d%s' % (prec, main_pres_type) + + + # print "FMT_SUFFIX_N", fmt_suffix_n + + #################### + + # Calculation of the mostly final numerical part value_str (no % + # sign, no global width applied). + + # Error formatting: + + + if 'S' in options: # Shorthand notation: + + # Calculation of the uncertainty part, uncert_str: + + if error_main == 0: + # The error is exactly zero + uncert_str = '0' + elif isnan(error_main): + uncert_str = robust_format(error_main, main_pres_type) + if 'L' in options: + uncert_str = r'\mathrm{%s}' % uncert_str + elif isinf(error_main): + if 'L' in options: + uncert_str = r'\infty' + else: + uncert_str = robust_format(error_main, main_pres_type) + else: # Error with a meaningful first digit (not 0, and real number) + + uncert = round(error_main, prec) + + # The representation uncert_str of the uncertainty (which will + # be put inside parentheses) is calculated: + + # The uncertainty might straddle the decimal point: we + # keep it as it is, in this case (e.g. 1.2(3.4), as this + # makes the result easier to read); the shorthand + # notation then essentially coincides with the +/- + # notation: + if first_digit(uncert) >= 0 and prec > 0: + # This case includes a zero rounded error with digits + # after the decimal point: + uncert_str = '%.*f' % (prec, uncert) + + else: + if uncert: + # The round is important because 566.99999999 can + # first be obtained when 567 is wanted (%d prints the + # integer part, not the rounded value): + uncert_str = '%d' % round(uncert*10.**prec) + else: + # The decimal point indicates a truncated float + # (this is easy to do, in this case, since + # fmt_prefix_e is ignored): + uncert_str = '0.' + + # End of the final number representation (width and alignment + # not included). This string is important for the handling of + # the width: + value_end = '(%s)%s%s' % (uncert_str, exp_str, percent_str) + any_exp_factored = True # Single exponent in the output + + ########## + # Nominal value formatting: + + # Calculation of fmt_prefix_n (prefix for the format of the + # main part of the nominal value): + + if fmt_parts['zero'] and fmt_parts['width']: + + # Padding with zeros must be done on the nominal value alone: + + # Remaining width (for the nominal value): + nom_val_width = max(int(fmt_parts['width']) - len(value_end), 0) + fmt_prefix_n = '%s%s%d%s' % ( + fmt_parts['sign'], fmt_parts['zero'], nom_val_width, + fmt_parts['comma']) + + else: + # Any 'zero' part should not do anything: it is not + # included + fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] + + # print "FMT_PREFIX_N", fmt_prefix_n + # print "FMT_SUFFIX_N", fmt_suffix_n + + nom_val_str = robust_format(nom_val_main, fmt_prefix_n+fmt_suffix_n) + + ########## + # Overriding of nom_val_str for LaTeX,; possibly based on the + # existing value (for NaN vs nan): + if 'L' in options: + + if isnan(nom_val_main): + nom_val_str = r'\mathrm{%s}' % nom_val_str + elif isinf(nom_val_main): + # !! It is wasteful, in this case, to replace + # nom_val_str: could this be avoided while avoiding to + # duplicate the formula for nom_val_str for the common + # case (robust_format(...))? + nom_val_str = r'%s\infty' % ('-' if nom_val_main < 0 else '') + + value_str = nom_val_str+value_end + + # Global width, if any: + + if fmt_parts['width']: # An individual alignment is needed: + + # Default alignment, for numbers: to the right (if no + # alignment is specified, a string is aligned to the + # left): + value_str = robust_align( + value_str, fmt_parts['fill'], fmt_parts['align'] or '>', + fmt_parts['width']) + + else: # +/- notation: + + # The common exponent is factored or not, depending on the + # width. This gives nice columns for the nominal values and + # the errors (no shift due to a varying exponent), when a need + # is given: + any_exp_factored = not fmt_parts['width'] + + # True when the error part has any exponent directly attached + # (case of an individual exponent for both the nominal value + # and the error, when the error is a non-0, real number). + # The goal is to avoid the strange notation nane-10, and to + # avoid the 0e10 notation for an exactly zero uncertainty, + # because .0e can give this for a non-zero error (the goal is + # to have a zero uncertainty be very explicit): + error_has_exp = not any_exp_factored and not special_error + + # Like error_has_exp, but only for real number handling + # (there is no special meaning to a zero nominal value): + nom_has_exp = not any_exp_factored and not isinfinite(nom_val_main) + + # Prefix for the parts: + if fmt_parts['width']: # Individual widths + + # If zeros are needed, then the width is taken into + # account now (before the exponent is added): + if fmt_parts['zero']: + + width = int(fmt_parts['width']) + + # Remaining (minimum) width after including the + # exponent: + remaining_width = max(width-len(exp_str), 0) + + fmt_prefix_n = '%s%s%d%s' % ( + fmt_parts['sign'], fmt_parts['zero'], + remaining_width if nom_has_exp else width, + fmt_parts['comma']) + + fmt_prefix_e = '%s%d%s' % ( + fmt_parts['zero'], + remaining_width if error_has_exp else width, + fmt_parts['comma']) + + else: + fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] + fmt_prefix_e = fmt_parts['comma'] + + else: # Global width + fmt_prefix_n = fmt_parts['sign']+fmt_parts['comma'] + fmt_prefix_e = fmt_parts['comma'] + + ## print "ANY_EXP_FACTORED", any_exp_factored + ## print "ERROR_HAS_EXP", error_has_exp + ## print "NOM_HAS_EXP", nom_has_exp + + #################### + # Nominal value formatting: + + # !! The following fails with Python < 2.6 when the format is + # not accepted by the % operator. This can happen when + # special_error is true, as the format used for the nominal + # value is essentially the format provided by the user, which + # may be empty: + + # print "FMT_PREFIX_N", fmt_prefix_n + # print "FMT_SUFFIX_N", fmt_suffix_n + + nom_val_str = robust_format(nom_val_main, fmt_prefix_n+fmt_suffix_n) + + # print "NOM_VAL_STR", nom_val_str + + #################### + # Error formatting: + + # !! Note: .0f applied to a float has no decimal point, but + # this does not appear to be documented + # (http://docs.python.org/2/library/string.html#format-specification-mini-language). This + # feature is used anyway, because it allows a possible comma + # format parameter to be handled more conveniently than if the + # 'd' format was used. + # + # The following uses a special integer representation of a + # zero uncertainty: + if error_main: + # The handling of NaN/inf in the nominal value identical to + # the handling of NaN/inf in the standard deviation: + if (isinfinite(nom_val_main) + # Only some formats have a nicer representation: + and fmt_parts['type'] in ('', 'g', 'G')): + # The error can be formatted independently: + fmt_suffix_e = (fmt_parts['prec'] or '')+fmt_parts['type'] + else: + fmt_suffix_e = '.%d%s' % (prec, main_pres_type) + else: + fmt_suffix_e = '.0%s' % main_pres_type + + error_str = robust_format(error_main, fmt_prefix_e+fmt_suffix_e) + + ########## + # Overriding of nom_val_str and error_str for LaTeX: + if 'L' in options: + + if isnan(nom_val_main): + nom_val_str = r'\mathrm{%s}' % nom_val_str + elif isinf(nom_val_main): + nom_val_str = r'%s\infty' % ('-' if nom_val_main < 0 else '') + + if isnan(error_main): + error_str = r'\mathrm{%s}' % error_str + elif isinf(error_main): + error_str = r'\infty' + + if nom_has_exp: + nom_val_str += exp_str + if error_has_exp: + error_str += exp_str + + #################### + # Final alignment of each field, if needed: + + if fmt_parts['width']: # An individual alignment is needed: + + # Default alignment, for numbers: to the right (if no + # alignment is specified, a string is aligned to the + # left): + effective_align = fmt_parts['align'] or '>' + + # robust_format() is used because it may handle alignment + # options, where the % operator does not: + + nom_val_str = robust_align( + nom_val_str, fmt_parts['fill'], effective_align, + fmt_parts['width']) + + error_str = robust_align( + error_str, fmt_parts['fill'], effective_align, + fmt_parts['width']) + + #################### + pm_symbol = PM_SYMBOLS[print_type] # Shortcut + + #################### + + # Construction of the final value, value_str, possibly with + # grouping (typically inside parentheses): + + (LEFT_GROUPING, RIGHT_GROUPING) = GROUP_SYMBOLS[print_type] + + # The nominal value and the error might have to be explicitly + # grouped together with parentheses, so as to prevent an + # ambiguous notation. This is done in parallel with the + # percent sign handling because this sign may too need + # parentheses. + if any_exp_factored and common_exp is not None: # Exponent + value_str = ''.join(( + LEFT_GROUPING, + nom_val_str, pm_symbol, error_str, + RIGHT_GROUPING, + exp_str, percent_str)) + else: # No exponent + value_str = ''.join([nom_val_str, pm_symbol, error_str]) + if percent_str: + value_str = ''.join(( + LEFT_GROUPING, value_str, RIGHT_GROUPING, percent_str)) + elif 'p' in options: + value_str = ''.join((LEFT_GROUPING, value_str, RIGHT_GROUPING)) + + return value_str + +def signif_dgt_to_limit(value, num_signif_d): + ''' + Return the precision limit necessary to display value with + num_signif_d significant digits. + + The precision limit is given as -1 for 1 digit after the decimal + point, 0 for integer rounding, etc. It can be positive. + ''' + + fst_digit = first_digit(value) + + limit_no_rounding = fst_digit-num_signif_d+1 + + # The number of significant digits of the uncertainty, when + # rounded at this limit_no_rounding level, can be too large by 1 + # (e.g., with num_signif_d = 1, 0.99 gives limit_no_rounding = -1, but + # the rounded value at that limit is 1.0, i.e. has 2 + # significant digits instead of num_signif_d = 1). We correct for + # this effect by adjusting limit if necessary: + rounded = round(value, -limit_no_rounding) + fst_digit_rounded = first_digit(rounded) + + if fst_digit_rounded > fst_digit: + # The rounded limit is fst_digit_rounded-num_signif_d+1; + # but this can only be 1 above the non-rounded limit: + limit_no_rounding += 1 + + return limit_no_rounding + + +def format_ufloat(ufloat_to_format, format_spec): + ''' + Formats a number with uncertainty. + + The format specification are the same as for format() for + floats, as defined for Python 2.6+ (restricted to what the % + operator accepts, if using an earlier version of Python), + except that the n presentation type is not supported. In + particular, the usual precision, alignment, sign flag, + etc. can be used. The behavior of the various presentation + types (e, f, g, none, etc.) is similar. Moreover, the format + is extended: the number of digits of the uncertainty can be + controlled, as is the way the uncertainty is indicated (with + +/- or with the short-hand notation 3.14(1), in LaTeX or with + a simple text string,...). + + Beyond the use of options at the end of the format + specification, the main difference with floats is that a "u" + just before the presentation type (f, e, g, none, etc.) + activates the "uncertainty control" mode (e.g.: ".6u"). This + mode is also activated when not using any explicit precision + (e.g.: "g", "10f", "+010,e" format specifications). If the + uncertainty does not have a meaningful number of significant + digits (0 and NaN uncertainties), this mode is automatically + deactivated. + + The nominal value and the uncertainty always use the same + precision. This implies trailing zeros, in general, even with + the g format type (contrary to the float case). However, when + the number of significant digits of the uncertainty is not + defined (zero or NaN uncertainty), it has no precision, so + there is no matching. In this case, the original format + specification is used for the nominal value (any "u" is + ignored). + + Any precision (".p", where p is a number) is interpreted (if + meaningful), in the uncertainty control mode, as indicating + the number p of significant digits of the displayed + uncertainty. Example: .1uf will return a string with one + significant digit in the uncertainty (and no exponent). + + If no precision is given, the rounding rules from the + Particle Data Group are used, if possible + (http://pdg.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf). For + example, the "f" format specification generally does not use + the default 6 digits after the decimal point, but applies the + PDG rules. + + A common exponent is used if an exponent is needed for the + larger of the nominal value (in absolute value) and the + standard deviation, unless this would result in a zero + uncertainty being represented as 0e... or a NaN uncertainty as + NaNe.... Thanks to this common exponent, the quantity that + best describes the associated probability distribution has a + mantissa in the usual 1-10 range. The common exponent is + factored (as in "(1.2+/-0.1)e-5"). unless the format + specification contains an explicit width (" 1.2e-5+/- 0.1e-5") + (this allows numbers to be in a single column, when printing + numbers over many lines). Specifying a minimum width of 1 is a + way of forcing any common exponent to not be factored out. + + The fill, align, zero and width parameters of the format + specification are applied individually to each of the nominal + value and standard deviation or, if the shorthand notation is + used, globally. + + The sign parameter of the format specification is only applied + to the nominal value (since the standard deviation is + positive). + + In the case of a non-LaTeX output, the returned string can + normally be parsed back with ufloat_fromstr(). This however + excludes cases where numbers use the "," thousands separator, + for example. + + Options can be added, at the end of the format + specification. Multiple options can be specified: + + - When "P" is present, the pretty-printing mode is activated: "±" + separates the nominal value from the standard deviation, exponents + use superscript characters, etc. + - When "S" is present (like in .1uS), the short-hand notation 1.234(5) + is used, indicating an uncertainty on the last digits; if the digits + of the uncertainty straddle the decimal point, it uses a fixed-point + notation, like in 12.3(4.5). + - When "L" is present, the output is formatted with LaTeX. + - "p" ensures that there are parentheses around the …±… part (no + parentheses are added if some are already present, for instance + because of an exponent or of a trailing % sign, etc.). This produces + outputs like (1.0±0.2) or (1.0±0.2)e7, which can be useful for + removing any ambiguity if physical units are added after the printed + number. + + An uncertainty which is exactly zero is represented as the + integer 0 (i.e. with no decimal point). + + The "%" format type forces the percent sign to be at the end + of the returned string (it is not attached to each of the + nominal value and the standard deviation). + + Some details of the formatting can be customized as described + in format_num(). + ''' + + # Convention on limits "between" digits: 0 = exactly at the + # decimal point, -1 = after the first decimal, 1 = before the + # units digit, etc. + + # Convention on digits: 0 is units (10**0), 1 is tens, -1 is + # tenths, etc. + + # This method does the format specification parsing, and + # calculates the various parts of the displayed value + # (mantissas, exponent, position of the last digit). The + # formatting itself is delegated to format_num(). + + ######################################## + + # Format specification parsing: + + match = re.match(r''' + (?P[^{}]??)(?P[<>=^]?) # fill cannot be { or } + (?P[-+ ]?) + (?P0?) + (?P\d*) + (?P,?) + (?:\.(?P\d+))? + (?Pu?) # Precision for the uncertainty? + # The type can be omitted. Options must not go here: + (?P[eEfFgG%]??) # n not supported + (?P[PSLp]*) # uncertainties-specific flags + $''', + format_spec, + re.VERBOSE) + + # Does the format specification look correct? + if not match: + raise ValueError( + 'Format specification %r cannot be used with object of type' + ' %r. Note that uncertainties-specific flags must be put at' + ' the end of the format string.' + # Sub-classes handled: + % (format_spec, ufloat_to_format.__class__.__name__)) + + # Effective format presentation type: f, e, g, etc., or None, + # like in + # https://docs.python.org/3.4/library/string.html#format-specification-mini-language. Contrary + # to what is written in the documentation, it is not true that + # None is "the same as 'g'": "{}".format() and "{:g}" do not + # give the same result, on 31415000000.0. None is thus kept as + # is instead of being replaced by "g". + pres_type = match.group('type') or None + + # Shortcut: + fmt_prec = match.group('prec') # Can be None + + ######################################## + + # Since the '%' (percentage) format specification can change + # the value to be displayed, this value must first be + # calculated. Calculating the standard deviation is also an + # optimization: the standard deviation is generally + # calculated: it is calculated only once, here: + nom_val = ufloat_to_format.nominal_value + std_dev = ufloat_to_format.std_dev + + # 'options' is the options that must be given to format_num(): + options = set(match.group('options')) + + ######################################## + + # The '%' format is treated internally as a display option: it + # should not be applied individually to each part: + if pres_type == '%': + # Because '%' does 0.0055*100, the value + # 0.5499999999999999 is obtained, which rounds to 0.5. The + # original rounded value is 0.006. The same behavior is + # found in Python 2.7: '{:.1%}'.format(0.0055) is '0.5%'. + # If a different behavior is needed, a solution to this + # problem would be to do the rounding before the + # multiplication. + std_dev *= 100 + nom_val *= 100 + pres_type = 'f' + options.add('%') + + # At this point, pres_type is in eEfFgG or None (not %). + + ######################################## + + # Non-real values (nominal value or standard deviation) must + # be handled in a specific way: + real_values = [value for value in [abs(nom_val), std_dev] + if not isinfinite(value)] + + # Calculation of digits_limit, which defines the precision of + # the nominal value and of the standard deviation (it can be + # None when it does not matter, like for NaN±NaN): + + # Reference value for the calculation of a possible exponent, + # if needed: + if pres_type in (None, 'e', 'E', 'g', 'G'): + # Reference value for the exponent: the largest value + # defines what the exponent will be (another convention + # could have been chosen, like using the exponent of the + # nominal value, irrespective of the standard deviation): + try: + exp_ref_value = max(real_values) + except ValueError: # No non-NaN value: NaN±NaN… + # No meaningful common exponent can be obtained: + pass + ## else: + ## print "EXP_REF_VAL", exp_ref_value + + # Should the precision be interpreted like for a float, or + # should the number of significant digits on the uncertainty + # be controlled? + if (( + # Default behavior: number of significant digits on the + # uncertainty controlled (if useful, i.e. only in + # situations where the nominal value and the standard + # error digits are truncated at the same place): + (not fmt_prec and len(real_values)==2) + or match.group('uncert_prec')) # Explicit control + # The number of significant digits of the uncertainty must + # be meaningful, otherwise the position of the significant + # digits of the uncertainty does not have a clear + # meaning. This gives us the *effective* uncertainty + # control mode: + and std_dev + and not isinfinite(std_dev)): + + # The number of significant digits on the uncertainty is + # controlled. + + # The limit digits_limit on the digits of nom_val and std_dev + # to be displayed is calculated. If the exponent notation is + # used, this limit is generally different from the finally + # displayed limit (e.g. 314.15+/-0.01 has digits_limit=-2, but + # will be displayed with an exponent as (3.1415+/-0.0001)e+02, + # which corresponds to 4 decimals after the decimal point, not + # 2). + + # Number of significant digits to use: + if fmt_prec: + num_signif_d = int(fmt_prec) # Can only be non-negative + if not num_signif_d: + raise ValueError("The number of significant digits" + " on the uncertainty should be positive") + else: + (num_signif_d, std_dev) = PDG_precision(std_dev) + + digits_limit = signif_dgt_to_limit(std_dev, num_signif_d) + + else: + + # No control of the number of significant digits on the + # uncertainty. + + ## print "PRECISION NOT BASED ON UNCERTAINTY" + + # The precision has the same meaning as for floats (it is + # not the uncertainty that defines the number of digits). + + # The usual default precision is used (this is useful for + # 3.141592±NaN with an "f" format specification, for + # example): + # + # prec is the precision for the main parts of the final + # format (in the sense of float formatting): + # + # https://docs.python.org/3.4/library/string.html#format-specification-mini-language + if fmt_prec: + prec = int(fmt_prec) + elif pres_type is None: + prec = 12 + else: + prec = 6 + + if pres_type in ('f', 'F'): + + digits_limit = -prec + + else: # Format type in None, eEgG + + # We first calculate the number of significant digits + # to be displayed (if possible): + + if pres_type in ('e', 'E'): + # The precision is the number of significant + # digits required - 1 (because there is a single + # digit before the decimal point, which is not + # included in the definition of the precision with + # the e/E format type): + num_signif_digits = prec+1 + + else: # Presentation type in None, g, G + + # Effective format specification precision: the rule + # of + # http://docs.python.org/2.7/library/string.html#format-specification-mini-language + # is used: + + # The final number of significant digits to be + # displayed is not necessarily obvious: trailing + # zeros are removed (with the gG presentation + # type), so num_signif_digits is the number of + # significant digits if trailing zeros were not + # removed. This quantity is relevant for the + # rounding implied by the exponent test of the g/G + # format: + + # 0 is interpreted like 1 (as with floats with a + # gG presentation type): + num_signif_digits = prec or 1 + + # The number of significant digits is important for + # example for determining the exponent: + + ## print "NUM_SIGNIF_DIGITS", num_signif_digits + + digits_limit = ( + signif_dgt_to_limit(exp_ref_value, num_signif_digits) + if real_values + else None) + + ## print "DIGITS_LIMIT", digits_limit + + ####################################### + + # Common exponent notation: should it be used? use_exp is set + # accordingly. If a common exponent should be used (use_exp is + # True), 'common_exp' is set to the exponent that should be + # used. + + if pres_type in ('f', 'F'): + use_exp = False + elif pres_type in ('e', 'E'): + if not real_values: + use_exp = False + else: + use_exp = True + # !! This calculation might have been already done, + # for instance when using the .0e format: + # signif_dgt_to_limit() was called before, which + # prompted a similar calculation: + common_exp = first_digit(round(exp_ref_value, -digits_limit)) + + else: # None, g, G + + # The rules from + # https://docs.python.org/3.4/library/string.html#format-specification-mini-language + # are applied. + + # Python's native formatting (whose result could be parsed + # in order to determine whether a common exponent should + # be used) is not used because there is shared information + # between the nominal value and the standard error (same + # last digit, common exponent) and extracting this + # information from Python would entail parsing its + # formatted string, which is in principle inefficient + # (internally, Python performs calculations that yield a + # string, and the string would be parsed back into + # separate parts and numbers, which is in principle + # unnecessary). + + # Should the scientific notation be used? The same rule as + # for floats is used ("-4 <= exponent of rounded value < + # p"), on the nominal value. + + if not real_values: + use_exp = False + else: + # Common exponent *if* used: + common_exp = first_digit(round(exp_ref_value, -digits_limit)) + + # print "COMMON EXP TEST VALUE", common_exp + # print "LIMIT EXP", common_exp-digits_limit+1 + # print "WITH digits_limit", digits_limit + + # The number of significant digits of the reference value + # rounded at digits_limit is exponent-digits_limit+1: + if -4 <= common_exp < common_exp-digits_limit+1: + use_exp = False + else: + use_exp = True + + ######################################## + + # Calculation of signif_limit (position of the significant + # digits limit in the final fixed point representations; this + # is either a non-positive number, or None), of + # nom_val_mantissa ("mantissa" for the nominal value, + # i.e. value possibly corrected for a factorized exponent), + # and std_dev_mantissa (similarly for the standard + # deviation). common_exp is also set to None if no common + # exponent should be used. + + if use_exp: + + # Not 10.**(-common_exp), for limit values of common_exp: + factor = 10.**common_exp + + nom_val_mantissa = nom_val/factor + std_dev_mantissa = std_dev/factor + # Limit for the last digit of the mantissas: + signif_limit = digits_limit - common_exp + + else: # No common exponent + + common_exp = None + + nom_val_mantissa = nom_val + std_dev_mantissa = std_dev + signif_limit = digits_limit + + ## print "SIGNIF_LIMIT", signif_limit + + ######################################## + + # Format of the main (i.e. with no exponent) parts (the None + # presentation type is similar to the g format type): + + main_pres_type = 'fF'[(pres_type or 'g').isupper()] + + # The precision of the main parts must be adjusted so as + # to take into account the special role of the decimal + # point: + if signif_limit is not None: # If signif_limit is pertinent + # The decimal point location is always included in the + # printed digits (e.g., printing 3456 with only 2 + # significant digits requires to print at least four + # digits, like in 3456 or 3500). + # + # The max() is important for example for + # 1234567.89123+/-12345.678 with the f format: in this + # case, signif_limit is +3 (2 significant digits necessary + # for the error, as per the PDG rules), but the (Python + # float formatting) precision to be used for the main + # parts is 0 (all digits must be shown). + # + # The 1 for the None pres_type represents "at least one + # digit past the decimal point" of Python + # (https://docs.python.org/3.4/library/string.html#format-specification-mini-language). This + # is only applied for null uncertainties. + prec = max(-signif_limit, + 1 if pres_type is None and not std_dev + else 0) + ## print "PREC", prec + + ######################################## + + # print ( + # "FORMAT_NUM parameters: nom_val_mantissa={}," + # " std_dev_mantissa={}, common_exp={}," + # " match.groupdict()={}, prec={}, main_pres_type={}," + # " options={}".format( + # nom_val_mantissa, std_dev_mantissa, common_exp, + # match.groupdict(), + # prec, + # main_pres_type, + # options)) + + # Final formatting: + return format_num(nom_val_mantissa, std_dev_mantissa, common_exp, + match.groupdict(), + prec=prec, + main_pres_type=main_pres_type, + options=options) diff --git a/uncertainties/test_uncertainties.py b/uncertainties/test_uncertainties.py index c5ed4ccc..9c693028 100644 --- a/uncertainties/test_uncertainties.py +++ b/uncertainties/test_uncertainties.py @@ -31,6 +31,7 @@ import uncertainties.core as uncert_core from uncertainties.core import ufloat, AffineScalarFunc, ufloat_fromstr +from uncertainties import formatting from uncertainties import umath # The following information is useful for making sure that the right @@ -1523,7 +1524,7 @@ def test_PDG_precision(): } for (std_dev, result) in tests.items(): - assert uncert_core.PDG_precision(std_dev) == result + assert formatting.PDG_precision(std_dev) == result def test_repr(): '''Test the representation of numbers with uncertainty.''' @@ -2138,14 +2139,14 @@ def test_custom_pretty_print_and_latex(): # We will later restore the defaults: PREV_CUSTOMIZATIONS = { - var: getattr(uncert_core, var).copy() + var: getattr(formatting, var).copy() for var in ['PM_SYMBOLS', 'MULT_SYMBOLS', 'GROUP_SYMBOLS']} - + # Customizations: for format in ["pretty-print", "latex"]: - uncert_core.PM_SYMBOLS[format] = u" ± " - uncert_core.MULT_SYMBOLS[format] = u"⋅" - uncert_core.GROUP_SYMBOLS[format] = ( "[", "]" ) + formatting.PM_SYMBOLS[format] = u" ± " + formatting.MULT_SYMBOLS[format] = u"⋅" + formatting.GROUP_SYMBOLS[format] = ( "[", "]" ) assert u"{:P}".format(x) == u'[2.00 ± 0.10]⋅10⁻¹¹' assert u"{:L}".format(x) == u'[2.00 ± 0.10] ⋅ 10^{-11}' @@ -2196,7 +2197,7 @@ def arrays_close(m1, m2, precision=1e-4): if not numbers_close(elmt1.std_dev, elmt2.std_dev, precision): return False - + return True @@ -2350,10 +2351,10 @@ def test_correlated_values(): for (variable, nom_value, variance) in zip( variables, nom_values, cov.diagonal()): - + assert numbers_close(variable.n, nom_value) - assert numbers_close(variable.s**2, variance) - + assert numbers_close(variable.s**2, variance) + assert arrays_close( cov, numpy.array(uncert_core.covariance_matrix(variables)))