-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_fln.py
126 lines (113 loc) · 6.53 KB
/
test_fln.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import os
import math
import cv2
import argparse
import tensorflow as tf
from dataset_loader import Dataset
from net import RPN, RTN, FLN
from utils_np import *
from utils_tf import *
from config import *
import argparse
parser = argparse.ArgumentParser(description='Test all scenes in a dataset')
parser.add_argument('--dataset', type=str, help='dataset name: FIT, nuScenes, Waymo')
parser.add_argument('--output', help='write output images', action='store_true')
parser.add_argument('--noRPN', help='run the network without rpn and rtn', action='store_true')
args = parser.parse_args()
dataset_name = args.dataset
write_output_flag = args.output
no_rpn_flag = args.noRPN
output_folder = OUTPUT_FOLDER_FLN
if write_output_flag:
if not os.path.exists(output_folder):
os.makedirs(output_folder)
width = DATASET_RESOLUTION[dataset_name][0]
height = DATASET_RESOLUTION[dataset_name][1]
if no_rpn_flag:
model_path = FLN_noRPN_MODEL_PATH
else:
model_path = FLN_MODEL_PATH
data_path = DATASET_PATH[dataset_name]
session = create_session()
# Define all placeholders for the input to the framework (i.e, the input to RPN, RTN and FLN)
x_static_segmentation_rpn = tf.placeholder(tf.float32, shape=(1, 3, RPN_RESOLUTION[1], RPN_RESOLUTION[0]))
x_static_segmentation = tf.placeholder(tf.float32, shape=(1, 3, FLN_RESOLUTION[1], FLN_RESOLUTION[0]))
x_objects = tf.placeholder(tf.float32, shape=(3, 1, 1, 6, 1))
x_imgs = tf.placeholder(tf.float32, shape=(3, 1, 3, FLN_RESOLUTION[1], FLN_RESOLUTION[0]))
x_semantics = tf.placeholder(tf.float32, shape=(3, 1, 3, FLN_RESOLUTION[1], FLN_RESOLUTION[0]))
x_egos = tf.placeholder(tf.float32, shape=(2, 1, 1, 7, 1))
# Build the network graph
output_rtn = []
if not no_rpn_flag:
rpn_network = RPN(x_static_segmentation_rpn, x_objects[2])
output_rpn = rpn_network.make_graph()
resampled_output_rpn = tf_resample_hyps(output_rpn, float(RPN_RESOLUTION[0]/FLN_RESOLUTION[0]), float(RPN_RESOLUTION[1]/FLN_RESOLUTION[1]))
rtn_network = RTN(x_static_segmentation, x_objects[2], x_imgs[2], x_egos, resampled_output_rpn)
output_rtn = rtn_network.make_graph()
fln_network = FLN(x_imgs, x_semantics, x_egos, x_objects, output_rtn)
output_fln = fln_network.make_graph()
# Load the model snapshot
optimistic_restore(session, model_path)
# Load the input dataset
dataset = Dataset(data_path, dataset_name)
nll_sum = 0
fde_sum = 0
iou_sum = 0
counter = 0
# Run the test for each sequence for each scene
for scene_index in range(len(dataset.scenes)):
scene = dataset.scenes[scene_index]
scene_name = scene.scene_path.split('/')[-1]
print('---------------- Scene %s ---------------------' % scene_name)
if write_output_flag:
result_scene_path = os.path.join(output_folder, dataset_name, scene_name)
os.makedirs(result_scene_path, exist_ok=True)
for i in range(len(scene.sequences)):
testing_sequence = scene.sequences[i]
static_segmentation_img_rpn = decode_semantic(testing_sequence.static_segmentations[0], width=RPN_RESOLUTION[0], height=RPN_RESOLUTION[1])
static_segmentation_img = decode_semantic(testing_sequence.static_segmentations[0], width=FLN_RESOLUTION[0], height=FLN_RESOLUTION[1])
objects_list = []
imgs_list = []
semantics_list = []
for k in range(3):
objects_list.append(decode_obj(testing_sequence.objects[k], testing_sequence.id, float(width/FLN_RESOLUTION[0]), float(height/FLN_RESOLUTION[1])))
imgs_list.append(decode_img(testing_sequence.imgs[k], width=FLN_RESOLUTION[0], height=FLN_RESOLUTION[1]))
semantics_list.append(decode_semantic(testing_sequence.segmentations[k], width=FLN_RESOLUTION[0], height=FLN_RESOLUTION[1]))
objects = np.stack(objects_list, axis=0)
imgs = np.stack(imgs_list, axis=0)
semantics = np.stack(semantics_list, axis=0)
egos = np.stack((decode_ego(testing_sequence.egos[0]), decode_ego(testing_sequence.egos[1])), axis=0)
# means, sigmas have the format (tl_x, tl_y, br_x, br_y)
# rtn_hyps, fln_hyps, gt have the format (center_x, center_y, w, h)
means, sigmas, mixture_weights, fln_hyps, rtn_hyps = session.run(output_fln,
feed_dict={x_static_segmentation_rpn: static_segmentation_img_rpn,
x_static_segmentation: static_segmentation_img,
x_objects: objects,
x_imgs: imgs,
x_semantics: semantics,
x_egos: egos
})
gt_object = decode_obj_gt(testing_sequence.objects[-1], testing_sequence.id)
fln_hyps_resampled = resample_hyps(fln_hyps, float(FLN_RESOLUTION[0] / width), float(FLN_RESOLUTION[1] / height))
means_resampled = resample_hyps(means, float(FLN_RESOLUTION[0] / width), float(FLN_RESOLUTION[1] / height))
sigmas_resampled = resample_hyps(sigmas, float(FLN_RESOLUTION[0] / width), float(FLN_RESOLUTION[1] / height))
if write_output_flag:
if not no_rpn_flag:
rtn_hyps_resampled = resample_hyps(rtn_hyps, float(FLN_RESOLUTION[0] / width),
float(FLN_RESOLUTION[1] / height))
drawn_img_rtn = draw_hyps(testing_sequence.imgs[-1], rtn_hyps_resampled, random_color=True)
cv2.imwrite(os.path.join(result_scene_path, '%d-rtn.jpg' % i), drawn_img_rtn)
draw_heatmap(testing_sequence.imgs[-1], means_resampled, sigmas, mixture_weights, width, height,
os.path.join(result_scene_path, '%d-fln.jpg' % i), gt=gt_object)
nll = compute_nll(means_resampled, sigmas_resampled, mixture_weights, gt_object)
fde = compute_oracle_FDE(fln_hyps_resampled, gt_object)
iou = compute_oracle_IOU(fln_hyps_resampled, gt_object)
print('NLL: %5.2f,\tFDE: %6.2f,\tIOU: %.2f' % (nll, fde, iou))
nll_sum += nll
fde_sum += fde
iou_sum += iou
counter += 1
print('--------------- AVERAGE METRICS ---------------')
print('NLL: %.2f, FDE: %.2f, IOU: %.2f, Number of samples: %d' %
(nll_sum/counter, fde_sum/counter, iou_sum/counter, counter))