-
Notifications
You must be signed in to change notification settings - Fork 940
/
Copy pathsampling_function.py
408 lines (321 loc) · 15.3 KB
/
sampling_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Started from some codes from early ComfyUI and then 80% rewritten,
# mainly for supporting different special control methods in Forge
# Copyright Forge 2024
import torch
import math
import collections
from backend import memory_management
from backend.sampling.condition import Condition, compile_conditions, compile_weighted_conditions
from backend.operations import cleanup_cache
from backend.args import dynamic_args, args
from backend import utils
def get_area_and_mult(conds, x_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'timestep_start' in conds:
timestep_start = conds['timestep_start']
if timestep_in[0] > timestep_start:
return None
if 'timestep_end' in conds:
timestep_end = conds['timestep_end']
if timestep_in[0] < timestep_end:
return None
if 'area' in conds:
area = conds['area']
if 'strength' in conds:
strength = conds['strength']
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
if 'mask' in conds:
mask_strength = 1.0
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert (mask.shape[1] == x_in.shape[2])
assert (mask.shape[2] == x_in.shape[3])
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in conds:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1))
conditioning = {}
model_conds = conds["model_conds"]
for c in model_conds:
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
control = conds.get('control', None)
patches = None
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
return cond_obj(input_x, mult, conditioning, area, control, patches)
def cond_equal_size(c1, c2):
if c1 is c2:
return True
if c1.keys() != c2.keys():
return False
for k in c1:
if not c1[k].can_concat(c2[k]):
return False
return True
def can_concat_cond(c1, c2):
if c1.input_x.shape != c2.input_x.shape:
return False
def objects_concatable(obj1, obj2):
if (obj1 is None) != (obj2 is None):
return False
if obj1 is not None:
if obj1 is not obj2:
return False
return True
if not objects_concatable(c1.control, c2.control):
return False
if not objects_concatable(c1.patches, c2.patches):
return False
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
crossattn_max_len = 0
temp = {}
for x in c_list:
for k in x:
cur = temp.get(k, [])
cur.append(x[k])
temp[k] = cur
out = {}
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
return out
def compute_cond_mark(cond_or_uncond, sigmas):
cond_or_uncond_size = int(sigmas.shape[0])
cond_mark = []
for cx in cond_or_uncond:
cond_mark += [cx] * cond_or_uncond_size
cond_mark = torch.Tensor(cond_mark).to(sigmas)
return cond_mark
def compute_cond_indices(cond_or_uncond, sigmas):
cl = int(sigmas.shape[0])
cond_indices = []
uncond_indices = []
for i, cx in enumerate(cond_or_uncond):
if cx == 0:
cond_indices += list(range(i * cl, (i + 1) * cl))
else:
uncond_indices += list(range(i * cl, (i + 1) * cl))
return cond_indices, uncond_indices
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in) * 1e-37
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in) * 1e-37
COND = 0
UNCOND = 1
to_run = []
for x in cond:
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
to_run += [(p, COND)]
if uncond is not None:
for x in uncond:
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
if memory_management.signal_empty_cache:
memory_management.soft_empty_cache()
free_memory = memory_management.get_free_memory(x_in.device)
if (not args.disable_gpu_warning) and x_in.device.type == 'cuda':
free_memory_mb = free_memory / (1024.0 * 1024.0)
safe_memory_mb = 1536.0
if free_memory_mb < safe_memory_mb:
print(f"\n\n----------------------")
print(f"[Low GPU VRAM Warning] Your current GPU free memory is {free_memory_mb:.2f} MB for this diffusion iteration.")
print(f"[Low GPU VRAM Warning] This number is lower than the safe value of {safe_memory_mb:.2f} MB.")
print(f"[Low GPU VRAM Warning] If you continue, you may cause NVIDIA GPU performance degradation for this diffusion process, and the speed may be extremely slow (about 10x slower).")
print(f"[Low GPU VRAM Warning] To solve the problem, you can set the 'GPU Weights' (on the top of page) to a lower value.")
print(f"[Low GPU VRAM Warning] If you cannot find 'GPU Weights', you can click the 'all' option in the 'UI' area on the left-top corner of the webpage.")
print(f"[Low GPU VRAM Warning] If you want to take the risk of NVIDIA GPU fallback and test the 10x slower speed, you can (but are highly not recommended to) add '--disable-gpu-warning' to CMD flags to remove this warning.")
print(f"----------------------\n\n")
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp) // i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) < free_memory:
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
control = None
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = cond_cat(c)
timestep_ = torch.cat([timestep] * batch_chunks)
transformer_options = {}
if 'transformer_options' in model_options:
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["sigmas"] = timestep
transformer_options["cond_mark"] = compute_cond_mark(cond_or_uncond=cond_or_uncond, sigmas=timestep)
transformer_options["cond_indices"], transformer_options["uncond_indices"] = compute_cond_indices(cond_or_uncond=cond_or_uncond, sigmas=timestep)
c['transformer_options'] = transformer_options
if control is not None:
p = control
while p is not None:
p.transformer_options = transformer_options
p = p.previous_controlnet
control_cond = c.copy() # get_control may change items in this dict, so we need to copy it
c['control'] = control.get_control(input_x, timestep_, control_cond, len(cond_or_uncond))
c['control_model'] = control
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
else:
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
del input_x
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
def sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, return_full=False):
edit_strength = sum((item['strength'] if 'strength' in item else 1) for item in cond)
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
for fn in model_options.get("sampler_pre_cfg_function", []):
model, cond, uncond_, x, timestep, model_options = fn(model, cond, uncond_, x, timestep, model_options)
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
cfg_result = x - model_options["sampler_cfg_function"](args)
elif not math.isclose(edit_strength, 1.0):
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * edit_strength
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
for fn in model_options.get("sampler_post_cfg_function", []):
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
"sigma": timestep, "model_options": model_options, "input": x}
cfg_result = fn(args)
if return_full:
return cfg_result, cond_pred, uncond_pred
return cfg_result
def sampling_function(self, denoiser_params, cond_scale, cond_composition):
unet_patcher = self.inner_model.inner_model.forge_objects.unet
model = unet_patcher.model
control = unet_patcher.controlnet_linked_list
extra_concat_condition = unet_patcher.extra_concat_condition
x = denoiser_params.x
timestep = denoiser_params.sigma
uncond = compile_conditions(denoiser_params.text_uncond)
cond = compile_weighted_conditions(denoiser_params.text_cond, cond_composition)
model_options = unet_patcher.model_options
seed = self.p.seeds[0]
if extra_concat_condition is not None:
image_cond_in = extra_concat_condition
else:
image_cond_in = denoiser_params.image_cond
if isinstance(image_cond_in, torch.Tensor):
if image_cond_in.shape[0] == x.shape[0] \
and image_cond_in.shape[2] == x.shape[2] \
and image_cond_in.shape[3] == x.shape[3]:
if uncond is not None:
for i in range(len(uncond)):
uncond[i]['model_conds']['c_concat'] = Condition(image_cond_in)
for i in range(len(cond)):
cond[i]['model_conds']['c_concat'] = Condition(image_cond_in)
if control is not None:
for h in cond:
h['control'] = control
if uncond is not None:
for h in uncond:
h['control'] = control
for modifier in model_options.get('conditioning_modifiers', []):
model, x, timestep, uncond, cond, cond_scale, model_options, seed = modifier(model, x, timestep, uncond, cond, cond_scale, model_options, seed)
denoised, cond_pred, uncond_pred = sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options, seed, return_full=True)
return denoised, cond_pred, uncond_pred
def sampling_prepare(unet, x):
B, C, H, W = x.shape
memory_estimation_function = unet.model_options.get('memory_peak_estimation_modifier', unet.memory_required)
unet_inference_memory = memory_estimation_function([B * 2, C, H, W])
additional_inference_memory = unet.extra_preserved_memory_during_sampling
additional_model_patchers = unet.extra_model_patchers_during_sampling
if unet.controlnet_linked_list is not None:
additional_inference_memory += unet.controlnet_linked_list.inference_memory_requirements(unet.model_dtype())
additional_model_patchers += unet.controlnet_linked_list.get_models()
if unet.has_online_lora():
lora_memory = utils.nested_compute_size(unet.lora_patches, element_size=utils.dtype_to_element_size(unet.model.computation_dtype))
additional_inference_memory += lora_memory
memory_management.load_models_gpu(
models=[unet] + additional_model_patchers,
memory_required=unet_inference_memory,
hard_memory_preservation=additional_inference_memory
)
if unet.has_online_lora():
utils.nested_move_to_device(unet.lora_patches, device=unet.current_device, dtype=unet.model.computation_dtype)
real_model = unet.model
percent_to_timestep_function = lambda p: real_model.predictor.percent_to_sigma(p)
for cnet in unet.list_controlnets():
cnet.pre_run(real_model, percent_to_timestep_function)
return
def sampling_cleanup(unet):
if unet.has_online_lora():
utils.nested_move_to_device(unet.lora_patches, device=unet.offload_device)
for cnet in unet.list_controlnets():
cnet.cleanup()
cleanup_cache()
return