forked from Kovak/YACS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackground_generator.py
571 lines (534 loc) · 26.3 KB
/
background_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
from random import random, randint, choice, uniform, randrange, sample, seed
from bisect import bisect_left, bisect_right
from geometry import (
draw_offset_layered_regular_polygon,
draw_layered_regular_polygon
)
from kivent_core.rendering.model import VertexModel
from kivent_noise.noise import scaled_octave_noise_2d
from colors import (
gen_star_color_levels, gen_color_palette,
sun_choices, color_choices, get_color1_choice_from_val,
get_color2_choice_from_val
)
from utils import lerp_color, iweighted_choice
class NoiseInfo(object):
def __init__(self, octaves, persistance, scale):
self.octaves = octaves
self.persistance = persistance
self.scale = scale
class ZoneInfo(object):
def __init__(self, world_seed, x, y):
seed(world_seed.get_seed_for_zone(x, y))
map_size = world_seed.map_size
cx_noise = world_seed.color_x_noise
cy_noise = world_seed.color_y_noise
star_noise = world_seed.star_count_noise
asteroid_noise = world_seed.asteroid_count_noise
self.offset = offset = (map_size[0] * x, map_size[1] * y)
color1_val = scaled_octave_noise_2d(cx_noise.octaves,
cx_noise.persistance,
cx_noise.scale, 0., 1.,
offset[0], offset[1])
color2_val = scaled_octave_noise_2d(cy_noise.octaves,
cy_noise.persistance,
cy_noise.scale, 0., 1.,
offset[0], offset[1])
star_val = scaled_octave_noise_2d(star_noise.octaves,
star_noise.persistance,
star_noise.scale, 0., 1.,
offset[0], offset[1])
asteroid_val = scaled_octave_noise_2d(asteroid_noise.octaves,
asteroid_noise.persistance,
asteroid_noise.scale, 0., 1.,
offset[0], offset[1])
band_min = world_seed.asteroid_band_min
band_max = world_seed.asteroid_band_max
if band_min <= asteroid_val <= band_max:
band_width = band_max - band_min
offset_val = asteroid_val - band_min
actual_val = offset_val / band_width
asteroid_count = int(world_seed.max_asteroids * actual_val)
else:
asteroid_count = 0
self.asteroid_count = asteroid_count
self.color1 = get_color1_choice_from_val(color1_val)
self.color2 = get_color2_choice_from_val(color2_val)
self.star_count = int(world_seed.max_stars * star_val)
self.tiny_planets = iweighted_choice([(0, 4), (1, 3), (2, 2), (3, 1),
(4, 1)])
self.small_planets = iweighted_choice([(1, 2), (2, 1), (0, 3)])
self.medium_planets = iweighted_choice([(1, 2), (2, 1), (0, 10)])
self.large_planets = iweighted_choice([(1, 1), (0, 13)])
self.tiny_suns = iweighted_choice([(2, 1), (1, 3), (0, 6)])
self.small_suns = iweighted_choice([(1, 1), (0, 6)])
self.medium_suns = iweighted_choice([(1, 1), (0, 9)])
self.large_suns = iweighted_choice([(1, 1), (0, 15)])
self.planet_infos = planet_infos = {}
planet_infos['tiny'] = sm_planet_templates = {}
planet_infos['small'] = ms_planet_templates = {}
planet_infos['medium'] = ml_planet_templates = {}
planet_infos['large'] = lg_planet_templates = {}
for x in range(self.tiny_planets):
sm_planet_templates[x] = PlanetInfo(uniform(.50, 125.), 'tiny')
for x in range(self.small_planets):
ms_planet_templates[x] = PlanetInfo(uniform(175., 350.),
'small')
for x in range(self.medium_planets):
ml_planet_templates[x] = PlanetInfo(uniform(375., 600.),
'medium')
for x in range(self.large_planets):
lg_planet_templates[x] = PlanetInfo(uniform(650., 850.), 'large')
class PlanetInfo(object):
def __init__(self, radius, size):
self.size = size
self.radius = radius
self.color1 = color1 = choice(color_choices)
self.color2 = color2 = choice(color_choices)
self.planet_divisions = planet_divisions = randint(6, 12)
even_div = 1.0 / planet_divisions
self.planet_palette = gen_color_palette(planet_divisions, color1,
color2,
uniform(even_div, 2*even_div),
randint(1, 4),
level_choices=[(2, 1), (3, 1),
(4, 2), (5, 2)])
self.cloud_low = cloud_low = uniform(.2, .5)
self.cloud_high = cloud_high = uniform(.6, .9)
self.cloud_divisions = cloud_divisions = randint(4, 6)
even_div = 1.0 / cloud_divisions
self.cloud_palette = gen_color_palette(cloud_divisions, color1, color2,
uniform(even_div, 2*even_div),
1,
level_choices=[(1, 1), (2, 2),
(3, 1), (4, 1),
(5, 1)],
do_alpha=True,
alpha_low_cutoff=cloud_low,
alpha_high_cutoff=cloud_high,
alpha_range=(0, 200))
self.planet_noise = NoiseInfo(16, uniform(.3, .7), uniform(.004, .009))
self.cloud_noise = NoiseInfo(8, uniform(.2, .4), uniform(.001, .004))
self.planet_offset = (uniform(-50000., 50000.),
uniform(-50000., 50000.))
self.cloud_offset = (uniform(-50000., 50000.),
uniform(-50000., 50000.))
class WorldSeed(object):
def __init__(self, world_seed, map_size):
self.world_seed = world_seed
seed(world_seed)
self.max_stars = 15000
self.max_asteroids = 300
self.map_size = map_size
self.asteroid_band_min = uniform(.25, .4)
self.asteroid_band_max = uniform(.45, .75)
self.color_x_noise = NoiseInfo(randint(4, 16), uniform(.3, .7),
uniform(.004, .009))
self.color_y_noise = NoiseInfo(randint(4, 16), uniform(.3, .7),
uniform(.004, .009))
self.star_count_noise = NoiseInfo(randint(4, 16), uniform(.5, .9),
uniform(.003, .006))
self.asteroid_count_noise = NoiseInfo(8, uniform(.2, .4),
uniform(.001, .004))
def get_seed_for_zone(self, x, y):
return self.world_seed + '_' + str(x) + '_' + str(y)
def get_global_map_seed(self):
return self.world_seed + '_global_map'
def get_global_map_planet_seed(self):
return self.world_seed + '_global_map_planet_seed'
class PlanetModel(object):
def __init__(self, name, radius, cloud_name):
self.radius = radius
self.name = name
self.cloud_name = cloud_name
class BackgroundGenerator(object):
def __init__(self, gameworld, **kwargs):
self.gameworld = gameworld
super(BackgroundGenerator, self).__init__(**kwargs)
self.planet_register = {}
def generate(self):
star_names = self.generate_stars(1., 4., 5., sun_choices, 20,
10, 10, 20, 30)
self.star_names = star_names
self.planet_names = planet_names = {}
planet_names['tiny_planets'] = self.generate_planets(
100., 75., 125., 10,
'tiny_planet','triangulated_models/circle_100_10.kem'
)
planet_names['small_planets'] = self.generate_planets(
200., 175., 350., 5,
'small_planet', 'triangulated_models/circle_200_10.kem'
)
planet_names['medium_planets'] = self.generate_planets(
400., 375., 600., 5,
'medium_planet', 'triangulated_models/circle_400_30.kem'
)
planet_names['large_planets'] = self.generate_planets(
800., 650., 850., 5,
'large_planet', 'triangulated_models/circle_800_50.kem'
)
def populate_model_with_noise(self, model_name, octaves,
persistence, scale, offset, radius, colors,
transparent_level = 0., default_alpha = 255):
model_manager = self.gameworld.model_manager
model = model_manager.models[model_name]
vertices = model.vertices
r2 = radius*radius
ox, oy = offset
col_keys = [x[0] for x in colors]
def distance_from_center(pos, center=(0.,0.)):
x_dist = pos[0] - center[0]
y_dist = pos[1] - center[1]
return x_dist*x_dist + y_dist*y_dist
for vertex in vertices:
pos = x,y = vertex.pos
if distance_from_center(pos) > r2:
zcolor = colors[0][1]
vertex.v_color = [zcolor[0], zcolor[1], zcolor[2], 0]
else:
noise = scaled_octave_noise_2d(octaves, persistence, scale, 0.,
1., x+ox, y+oy)
col_bisect = bisect_left(col_keys, noise)
left = colors[col_bisect-1]
right = colors[col_bisect]
t = (noise - left[0]) / (right[0] - left[0])
new_color = lerp_color(left[1], right[1], t)
if len(new_color) == 3:
new_color.append(default_alpha)
if noise < transparent_level:
new_color[3] = 0
vertex.v_color = new_color
def draw_sun(self, model_name, color_choice, radius):
divisions = randint(6, 12)
even_div = 1.0 / divisions
colors = gen_color_palette(
divisions, color_choice,
color_choice, uniform(even_div, 2*even_div), randint(1, 6),
level_choices=[(1, 6), (2, 1), (3, 1)]
)
self.populate_model_with_noise(
model_name, 16, uniform(.5, .9),
uniform(.03, .05), (uniform(radius, 10000.),
uniform(radius, 10000.)), radius, colors
)
def generate_star(self, model_name, sides, color, max_radius,
do_copy=False):
colors = gen_star_color_levels(color)
first_r = uniform(.5, .9)
final_r = uniform(.01, .1)
total = first_r + final_r
remainder = 1.0 - total
middle_r = uniform(final_r, final_r+remainder)
radius_color_dict = {
1: (max_radius*first_r, colors[1]),
2: (max_radius*middle_r, colors[2]),
3: (max_radius*final_r, colors[3])}
star_data = draw_layered_regular_polygon((0., 0.), 3, sides,
colors[0], radius_color_dict)
model_manager = self.gameworld.model_manager
return model_manager.load_model('vertex_format_2f4ub',
star_data['vert_count'], star_data['ind_count'], model_name,
indices=star_data['indices'], vertices=star_data['vertices'],
do_copy=do_copy)
def generate_offset_star(self, model_name, sides, color, max_radius_1,
max_radius_2, do_copy=False):
colors = gen_star_color_levels(color)
first_r = uniform(.5, .9)
final_r = uniform(.01, .1)
total = first_r + final_r
remainder = 1.0 - total
middle_r = uniform(final_r, final_r+remainder)
radius_color_dict = {
1: ((max_radius_1*first_r, max_radius_2*first_r), colors[1]),
2: ((max_radius_1*middle_r, max_radius_2*first_r), colors[2]),
3: ((max_radius_1*final_r, max_radius_2*final_r), colors[3])}
star_data = draw_offset_layered_regular_polygon((0., 0.), 3, sides,
colors[0], radius_color_dict)
model_manager = self.gameworld.model_manager
return model_manager.load_model('vertex_format_2f4ub',
star_data['vert_count'], star_data['ind_count'], model_name,
indices=star_data['indices'], vertices=star_data['vertices'],
do_copy=do_copy)
def draw_planet_simple(self, model_name, radius, color1, color2):
divisions = randint(6, 12)
even_div = 1.0 / divisions
colors = gen_color_palette(divisions, color1,
color2, uniform(even_div, 2*even_div),
randint(1, 4),
level_choices=[(2, 1), (3, 1), (4, 2),
(5, 2)],
)
self.populate_model_with_noise(model_name, 16, uniform(.3, .7),
uniform(.004, .009),
(uniform(radius, radius*4),
uniform(radius, radius*4)),
radius, colors)
def draw_planet(self, model_name, cloud_name, radius, color1, color2):
divisions = randint(6, 12)
even_div = 1.0 / divisions
colors = gen_color_palette(divisions, color1,
color2, uniform(even_div, 2*even_div),
randint(1, 4),
level_choices=[(2, 1), (3, 1), (4, 2),
(5, 2)],
)
self.populate_model_with_noise(model_name, 16, uniform(.3, .7),
uniform(.004, .009),
(uniform(radius, radius*4),
uniform(radius, radius*4)),
radius, colors)
divisions = randint(4, 6)
even_div = 1.0 / divisions
colors = gen_color_palette(
divisions, color1, color2, uniform(even_div, 2*even_div), 1,
level_choices=[(1, 1), (2, 2), (3, 1), (4, 1), (5, 1)],
do_alpha=True,
alpha_low_cutoff=uniform(.2, .5),
alpha_high_cutoff=uniform(.6, .9),
alpha_range=(0, 200)
)
self.populate_model_with_noise(
cloud_name, 8, uniform(.2, .4),
uniform(.001, .004),
(uniform(radius, radius*4), uniform(radius, radius*4)),
radius, colors
)
def generate_planets(self, starting_radius, min_s, max_s, count,
model_name, model_file):
min_scale = min_s/starting_radius
max_scale = max_s/starting_radius
model_manager = self.gameworld.model_manager
model_from_file_name = model_manager.load_model_from_pickle(model_file,
model_name=model_name)
copy_model = model_manager.copy_model
models = model_manager.models
cloud_name = model_from_file_name + '_clouds'
copy_model(model_from_file_name, model_name=cloud_name)
names = [model_from_file_name]
names_a = names.append
planet_register = self.planet_register
planet_register[model_from_file_name] = PlanetModel(
model_from_file_name, starting_radius, cloud_name
)
for x in range(count-1):
scale_factor = uniform(min_scale, max_scale)
new_name = copy_model(model_from_file_name)
names_a(new_name)
model = models[new_name]
cloud_name = new_name + '_clouds'
planet_register[new_name] = PlanetModel(
new_name, scale_factor*starting_radius, cloud_name
)
model.mult_all_vertex_attribute('pos', scale_factor)
copy_model(new_name, model_name=cloud_name)
return names
def generate_stars(self, min_radius, max_radius, max_offset_radius,
color_choices, four_side_count, offset_count,
normal_count, min_sides, max_sides):
stars = {}
for color in color_choices:
stars[color] = c_stars = []
c_stars_a = c_stars.append
for x in range(four_side_count):
model_name = 'star_4_' + str(x)
radius = uniform(min_radius, max_radius)
c_stars_a(
self.generate_star(model_name, 4, color,
radius, do_copy=True)
)
for x in range(normal_count):
side_count = randrange(min_sides, max_sides)
if side_count % 2 == 1:
side_count += 1
model_name = 'star_' + str(side_count) + '_' + str(x)
radius = uniform(min_radius, max_radius)
c_stars_a(
self.generate_star(model_name, side_count, color,
radius, do_copy=True)
)
for x in range(offset_count):
side_count = randrange(min_sides, max_sides)
if side_count % 2 == 1:
side_count += 1
model_name = 'star_' + str(side_count) + '_' + str(x)
radius1 = uniform(min_radius, max_radius)
radius2 = uniform(min_radius, max_offset_radius)
c_stars_a(
self.generate_offset_star(model_name, side_count,
color, radius1, radius2, do_copy=True)
)
return stars
def draw_map(self, size, offset, star_count, color1, color2,
star_renderer=None,
planet_renderer=None,
sun_renderer=None,
do_stars=True,
max_color1_chance=.5, max_color2_chance=.25,
tiny_p_counts=[(1, 2), (2, 1), (0, 3)],
small_p_counts=[(1, 1), (2, 1), (0, 4)],
medium_p_counts=[(1, 1), (0, 10)],
large_p_counts=[(1, 1), (0, 13)],
tiny_sun_counts = [(1, 1), (0, 4)],
small_sun_counts = [(1, 1), (0, 5)],
medium_sun_counts = [(1, 1), (0, 10)],
large_sun_counts = [(0, 1)],
persistence=.3,
octaves=8,
scale=.003,
used_planet_names=None):
w, h = size
ox, oy = offset
if used_planet_names is None:
used_planet_names = []
star1_chance = uniform(0, max_color1_chance)
star2_chance = uniform(0, max_color2_chance)
star_choices = self.star_names
star1_choices = star_choices[color1]
star2_choices = star_choices[color2]
init_entity = self.gameworld.init_entity
ent_count = 0
planet_choices = self.planet_names
if star_renderer is not None:
for i in range(star_count):
chance = random()
star_name = None
if 0 < chance < star1_chance:
star_name = choice(star1_choices)
elif star1_chance < chance < star1_chance + star2_chance:
star_name = choice(star2_choices)
if star_name is not None:
create_dict = {
'position': (uniform(0., w), uniform(0, h)),
star_renderer: {'model_key': star_name}
}
init_entity(create_dict, ['position', star_renderer])
planet_register = self.planet_register
if planet_renderer is not None:
choice_pairs = [
(tiny_p_counts, planet_choices['tiny_planets']),
(small_p_counts, planet_choices['small_planets']),
(medium_p_counts, planet_choices['medium_planets']),
(large_p_counts, planet_choices['large_planets'])
]
for counts, choices in choice_pairs:
for planet_name in sample(choices, iweighted_choice(counts)):
if planet_name in used_planet_names:
continue
used_planet_names.append(planet_name)
planet_data = planet_register[planet_name]
self.draw_planet(planet_name, planet_data.cloud_name,
planet_data.radius+50., choice(color_choices),
choice(color_choices))
planet_pos = (uniform(0., w), uniform(0, h))
create_dict = {
'position': planet_pos,
planet_renderer: {'model_key': planet_name}
}
self.gameworld.init_entity(create_dict, ['position',
planet_renderer])
create_dict = {
'position': planet_pos,
planet_renderer: {'model_key': planet_data.cloud_name}
}
self.gameworld.init_entity(create_dict, ['position',
planet_renderer])
if sun_renderer is not None:
choice_pairs = [
(tiny_sun_counts, planet_choices['tiny_planets']),
(small_sun_counts,
planet_choices['small_planets']),
(medium_sun_counts,
planet_choices['medium_planets']),
(large_sun_counts, planet_choices['large_planets'])
]
for counts, choices in choice_pairs:
for planet_name in sample(choices, iweighted_choice(counts)):
if planet_name in used_planet_names:
print('planet name in us', planet_name)
continue
used_planet_names.append(planet_name)
planet_data = planet_register[planet_name]
self.draw_sun(planet_name, choice([color1, color2]),
planet_data.radius - 10.)
planet_pos = (uniform(0., w), uniform(0, h))
create_dict = {
'position': planet_pos,
sun_renderer: {'model_key': planet_name}
}
self.gameworld.init_entity(create_dict, ['position',
sun_renderer])
return used_planet_names
def generate_map(self, world_seed, x, y):
zone_info = ZoneInfo(world_seed, x, y)
color1 = zone_info.color1
color2 = zone_info.color2
star_count = zone_info.star_count
asteroid_count = zone_info.asteroid_count
offset = zone_info.offset
map_size = world_seed.map_size
tiny_p_count = zone_info.tiny_planets
tiny_1 = tiny_p_count // 2
tiny_2 = tiny_p_count - tiny_1
small_p_count = zone_info.small_planets
small_1 = small_p_count // 2
small_2 = small_p_count - small_1
medium_p_count = zone_info.medium_planets
medium_1 = medium_p_count // 2
medium_2 = medium_p_count - medium_1
tiny_sun_count = zone_info.tiny_suns
tiny_sun_1 = tiny_sun_count // 2
tiny_sun_2 = tiny_sun_count - tiny_sun_1
small_sun_count = zone_info.small_suns
small_sun_1 = small_sun_count // 2
small_sun_2 = small_sun_count - small_sun_1
medium_sun_count = zone_info.medium_suns
medium_sun_1 = medium_sun_count // 2
medium_sun_2 = medium_sun_count - medium_sun_1
large_sun_count = zone_info.large_suns
print(zone_info.tiny_suns, zone_info.small_suns,
zone_info.medium_suns, zone_info.large_suns)
print(tiny_sun_1, tiny_sun_2)
self.draw_map(
map_size, offset,
int(star_count*.5), color1, color2,
star_renderer='back_stars')
used = self.draw_map(
map_size, offset,
int(star_count*.3), color1, color2,
star_renderer='mid_stars')
used = self.draw_map(
map_size, offset, int(star_count*.1), color1, color2,
sun_renderer='sun1', used_planet_names=used,
tiny_sun_counts = [(tiny_sun_1, 1)],
small_sun_counts = [(small_sun_1, 1)],
medium_sun_counts = [(medium_sun_1, 1)],
large_sun_counts = [(large_sun_count, 1)],
)
used = self.draw_map(
map_size, offset, int(star_count*.1), color1, color2,
sun_renderer='sun2', used_planet_names=used,
tiny_sun_counts = [(tiny_sun_2, 1)],
small_sun_counts = [(small_sun_2, 1)],
medium_sun_counts = [(medium_sun_2, 1)],
large_sun_counts = [(0, 1)],)
used = self.draw_map(
map_size, offset,
0, color1, color2, planet_renderer='planet1',
tiny_p_counts=[(tiny_1, 1)],
small_p_counts=[(small_1, 1)],
medium_p_counts=[(medium_1, 1)],
large_p_counts=[(0, 1)],
used_planet_names=used)
used = self.draw_map(
map_size, offset,
0, color1, color2, planet_renderer='planet2',
tiny_p_counts=[(tiny_2, 1)],
small_p_counts=[(small_2, 1)],
medium_p_counts=[(medium_2, 1)],
large_p_counts=[(zone_info.large_planets, 1)],
used_planet_names=used)
asteroid_system = self.gameworld.system_manager['asteroids']
for x in range(asteroid_count):
x = randrange(0, map_size[0])
y = randrange(0, map_size[1])
asteroid_system.spawn_object_from_template('asteroid1', (x, y))