-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwaterfall_2d.py
40 lines (34 loc) · 1.04 KB
/
waterfall_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import matplotlib.pyplot as plt
import numpy as np
# generate data: sine wave (x-y) with 1/sqrt(z) frequency dependency
# this is simply some "interesting looking" dummy data
Nx = 200
Nz = 91
x = np.linspace(-10, 10, Nx)
z = 0.1*np.linspace(-10, 10, Nz)**2 + 4
w = 2*np.pi
y = np.zeros((Nx, Nz))
for i in range(Nz):
y[:, i] = np.cos(w*x/z[i]**0.5)/z[i]**0.2
# create waterfall plot
fig = plt.figure()
ax = fig.add_subplot(111)
for side in ['right', 'top', 'left']:
ax.spines[side].set_visible(False)
highest = np.max(y)
lowest = np.min(y)
delta = highest-lowest
t = np.sqrt(abs(delta))/10
print(lowest)
bottom = lowest*np.ones(Nx)
for i in np.flip(range(Nz)):
yi = y[:,i] + i*t
zindex = Nz-i
ax.fill_between(x, lowest, yi, facecolor="white", alpha=0.5, zorder=zindex)
ax.plot(x, yi, c="black", zorder=zindex, lw=0.5)
delta_x = max(x)-min(x)
if (i)%10==0:
ax.text(min(x)-5e-2*delta_x, t*i, "$\\theta=%i^\\circ$"%i, horizontalAlignment="right")
plt.yticks([])
ax.yaxis.set_ticks_position('none')
fig.savefig("waterfall_plot")