-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathexport_model.py
executable file
·72 lines (62 loc) · 2.91 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
#-------------------------------------------------------------------------------
# Author: Lukasz Janyst <lukasz@jany.st>
# Date: 27.09.2017
#-------------------------------------------------------------------------------
# This file is part of SSD-TensorFlow.
#
# SSD-TensorFlow is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# SSD-TensorFlow is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SSD-Tensorflow. If not, see <http://www.gnu.org/licenses/>.
#-------------------------------------------------------------------------------
import argparse
import sys
import os
import tensorflow as tf
from tensorflow.python.framework import graph_util
if sys.version_info[0] < 3:
print("This is a Python 3 program. Use Python 3 or higher.")
sys.exit(1)
#---------------------------------------------------------------------------
# Parse the commandline
#---------------------------------------------------------------------------
parser = argparse.ArgumentParser(description='Export a tensorflow model')
parser.add_argument('--metagraph-file', default='final.ckpt.meta',
help='name of the metagraph file')
parser.add_argument('--checkpoint-file', default='final.ckpt',
help='name of the checkpoint file')
parser.add_argument('--output-file', default='model.pb',
help='name of the output file')
parser.add_argument('--output-tensors', nargs='+',
required=True,
help='names of the output tensors')
args = parser.parse_args()
print('[i] Matagraph file: ', args.metagraph_file)
print('[i] Checkpoint file: ', args.checkpoint_file)
print('[i] Output file: ', args.output_file)
print('[i] Output tensors: ', args.output_tensors)
for f in [args.checkpoint_file+'.index', args.metagraph_file]:
if not os.path.exists(f):
print('[!] Cannot find file:', f)
sys.exit(1)
#-------------------------------------------------------------------------------
# Export the graph
#-------------------------------------------------------------------------------
with tf.Session() as sess:
saver = tf.train.import_meta_graph(args.metagraph_file)
saver.restore(sess, args.checkpoint_file)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def, args.output_tensors)
with open(args.output_file, "wb") as f:
f.write(output_graph_def.SerializeToString())