-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
501 lines (432 loc) · 24.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import time
import torch
import numpy as np
from base_trainer import BaseTrainer
import config
from network.avatar import AvatarNet
from network.lpips import LPIPS
from dataset.dataset_pose import PoseDataset
import utils.lr_schedule as lr_schedule
import utils.net_util as net_util
import utils.recon_util as recon_util
import utils.visualize_util as visualize_util
from utils.nerf_util import get_rays
class AvatarTrainer(BaseTrainer):
def __init__(self, opt):
super(AvatarTrainer, self).__init__(opt)
def update_config_before_epoch(self, epoch_idx):
# update ray sampling scheme
self.dataset.update_ray_sampling_schedule(epoch_idx)
if epoch_idx > 5:
config.opt['train']['compute_grad'] = False
else:
config.opt['train']['compute_grad'] = True
if self.dataset.ray_sampling['type'] == 'patch':
self.loss_weight['tv'] = 1e2
def forward_one_pass(self, items):
total_loss = 0
batch_losses = {}
""" random sampling """
if 'nerf_random' in items:
items.update(items['nerf_random'])
render_output = self.network.render(items, depth_guided_sampling = self.opt['train']['depth_guided_sampling'])
# color loss
if 'rgb_map' in render_output:
color_loss = torch.nn.L1Loss()(render_output['rgb_map'], items['color_gt'])
total_loss += self.loss_weight['color'] * color_loss
batch_losses.update({
'color_loss_random': color_loss.item()
})
# mask loss
if 'acc_map' in render_output:
mask_loss = torch.nn.L1Loss()(render_output['acc_map'], items['mask_gt'])
total_loss += self.loss_weight['mask'] * mask_loss
batch_losses.update({
'mask_loss_random': mask_loss.item()
})
# eikonal loss
if 'normal' in render_output:
eikonal_loss = ((torch.linalg.norm(render_output['normal'], dim = -1) - 1.) ** 2).mean()
total_loss += self.loss_weight['eikonal'] * eikonal_loss
batch_losses.update({
'eikonal_loss': eikonal_loss.item()
})
""" regularization """
if self.loss_weight['tv'] > 0.:
if 'tv_loss' in render_output:
tv_loss = render_output['tv_loss'].mean()
total_loss += self.loss_weight['tv'] * tv_loss
batch_losses.update({
'tv_loss_random': tv_loss.item()
})
""" patch sampling """
if 'nerf_patch' in items:
items.update(items['nerf_patch'])
render_output = self.network.render(items, depth_guided_sampling = self.opt['train']['depth_guided_sampling'])
# color loss
if 'rgb_map' in render_output:
color_loss = torch.nn.L1Loss()(render_output['rgb_map'], items['color_gt'])
total_loss += self.loss_weight['color'] * color_loss
batch_losses.update({
'color_loss_patch': color_loss.item()
})
if self.loss_weight['lpips'] > 0.:
patch_num = self.opt['train']['ray_sampling']['patch']['patch_num']
patch_size = self.opt['train']['ray_sampling']['patch']['patch_size']
rgb_map = render_output['rgb_map'].reshape(-1, patch_size, patch_size, 3)
rgb_map_gt = items['color_gt'].reshape(-1, patch_size, patch_size, 3)
# convert to rgb
rgb_map = rgb_map[..., [2, 1, 0]]
rgb_map_gt = rgb_map_gt[..., [2, 1, 0]]
lpips_loss = self.lpips.forward(rgb_map.permute(0, 3, 1, 2),
rgb_map_gt.permute(0, 3, 1, 2),
normalize = True).mean()
total_loss += 0.1 * self.loss_weight['lpips'] * lpips_loss
batch_losses.update({
'lpips_loss': lpips_loss.item()
})
# mask loss
if 'acc_map' in render_output:
mask_loss = torch.nn.L1Loss()(render_output['acc_map'], items['mask_gt'])
total_loss += self.loss_weight['mask'] * mask_loss
batch_losses.update({
'mask_loss_patch': mask_loss.item()
})
""" regularization """
if self.loss_weight['tv'] > 0.:
if 'tv_loss' in render_output:
tv_loss = render_output['tv_loss'].mean()
total_loss += self.loss_weight['tv'] * tv_loss
batch_losses.update({
'tv_loss_patch': tv_loss.item()
})
return total_loss, batch_losses
def run(self):
MvRgbDataset = __import__(self.opt['train'].get('dataset', 'dataset.dataset_mv_rgb_slrf'), fromlist = ['MvRgbDataset']).MvRgbDataset
self.set_dataset(MvRgbDataset(**self.opt['train']['data']))
self.set_network(AvatarNet(self.opt['model']).to(config.device))
self.set_net_dict({
'network': self.network
})
self.set_optm_dict({
'network': torch.optim.Adam(self.network.parameters(), lr = 1e-3)
})
self.set_lr_schedule_dict({
'network': lr_schedule.get_learning_rate_schedules(**self.opt['train']['lr']['network'])
})
self.set_update_keys(['network'])
if 'lpips' in self.opt['train']['loss_weight']:
self.lpips = LPIPS(net = 'vgg').to(config.device)
for p in self.lpips.parameters():
p.requires_grad = False
self.train()
def test_geometry(self, items, space = 'live', testing_res = (128, 128, 128)):
if space == 'live':
bounds = items['live_bounds'][0]
else:
bounds = items['cano_bounds'][0]
vol_pts = net_util.generate_volume_points(bounds, testing_res)
chunk_size = 256 * 256 * 4
sdf_list = []
for i in range(0, vol_pts.shape[0], chunk_size):
vol_pts_chunk = vol_pts[i: i + chunk_size][None]
if space == 'live':
cano_pts_chunk, near_flag = self.network.transform_live2cano(vol_pts_chunk, items, near_thres = 0.1)
else:
cano_pts_chunk = vol_pts_chunk
near_flag = torch.ones(cano_pts_chunk.shape[:2], dtype = torch.bool)
sdf_chunk = torch.zeros(cano_pts_chunk.shape[1]).to(cano_pts_chunk)
if near_flag.sum() > 0:
ret = self.network.forward_cano_radiance_field(cano_pts_chunk[near_flag][None], None, items['pose'])
sdf_chunk[near_flag[0]] = ret['sdf'][0, :, 0]
sdf_list.append(sdf_chunk)
sdf_list = torch.cat(sdf_list, 0)
vertices, faces, normals = recon_util.recon_mesh(sdf_list, testing_res, bounds, iso_value = 0.)
return vertices, faces, normals
@torch.no_grad()
def test(self):
from utils.renderer import Renderer, gl_perspective_projection_matrix
from utils.net_util import to_cuda
from utils.obj_io import save_mesh_as_ply
import cv2 as cv
MvRgbDataset = __import__(self.opt['test'].get('dataset', 'dataset.dataset_mv_rgb_slrf'), fromlist = ['MvRgbDataset']).MvRgbDataset
training_dataset = MvRgbDataset(**self.opt['test']['data'], training = False)
if 'pose_data' in self.opt['test']:
testing_dataset = PoseDataset(**self.opt['test']['pose_data'], smpl_shape = training_dataset.smpl_data['betas'][0])
dataset_name = testing_dataset.dataset_name
seq_name = testing_dataset.seq_name
else:
testing_dataset = training_dataset
dataset_name = 'training'
seq_name = ''
self.set_dataset(testing_dataset)
self.set_network(AvatarNet(self.opt['model']).to(config.device))
self.network.eval()
self.set_net_dict({
'network': self.network
})
self.load_ckpt(self.opt['test']['prev_ckpt'], False)
output_dir = self.opt['test'].get('output_dir', None)
if output_dir is None:
view_setting = config.opt['test'].get('view_setting', 'free')
if view_setting == 'free':
view_folder = 'free_view'
elif view_setting == 'camera':
view_folder = '%d_view' % config.opt['test']['render_view_idx']
else:
raise ValueError('Invalid view setting for animation!')
output_dir = './test_results/{}/{}/{}/{}'.format(training_dataset.subject_name, dataset_name, seq_name, view_folder)
print('# Output dir: %s' % output_dir)
os.makedirs(output_dir + '/live_geometry', exist_ok = True)
os.makedirs(output_dir + '/live_geometry/rendered_geometry', exist_ok = True)
os.makedirs(output_dir + '/acc_map', exist_ok = True)
os.makedirs(output_dir + '/live_skeleton', exist_ok = True)
os.makedirs(output_dir + '/rgb_map', exist_ok = True)
pos_renderer = None
geo_renderer = None
phong_renderer = None
item_0 = self.dataset.getitem(0, training = False)
object_center = item_0['live_bounds'].mean(0)
global_orient = item_0['global_orient'].numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
global_orient = cv.Rodrigues(global_orient)[0]
data_num = len(self.dataset)
for idx in range(data_num):
time_ani_start = time.time()
img_scale = self.opt['test'].get('img_scale', 1.0)
view_setting = config.opt['test'].get('view_setting', 'free')
if view_setting == 'camera':
# training view setting
cam_id = config.opt['test']['render_view_idx']
intr = self.dataset.intr_mats[cam_id].copy()
intr[:2] *= img_scale
item = self.dataset.getitem(idx,
training = False,
extr = self.dataset.extr_mats[cam_id],
intr = intr,
img_w = int(img_scale * self.dataset.img_widths[cam_id]),
img_h = int(img_scale * self.dataset.img_heights[cam_id]))
elif view_setting == 'free':
# free view setting
frame_num_per_circle = 216
rot_Y = (idx % frame_num_per_circle) / float(frame_num_per_circle) * 2 * np.pi
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
item = self.dataset.getitem(idx, training = False, extr = extr,
intr = intr, img_w = img_w, img_h = img_h)
else:
raise ValueError('Invalid view setting for animation!')
items = to_cuda(item, add_batch = True)
if self.opt['test']['depth_guided_sampling']['flag']:
vertices, faces, normals = self.test_geometry(items, 'live', testing_res = self.opt['test']['vol_res'])
if self.opt['test']['save_mesh']:
save_mesh_as_ply(output_dir + '/live_geometry/%s.ply' % item['data_idx'],
vertices, faces, normals)
# render geometry
if geo_renderer is None:
geo_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'phong_geometry', bg_color = (1, 1, 1))
extr, intr = item['extr'], item['intr']
proj_mat = gl_perspective_projection_matrix(intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2], item['img_w'], item['img_h'])
geo_renderer.set_mvp_mat(proj_mat @ extr)
extr_gl = extr.copy()
extr_gl[1:3, :3] *= -1
geo_renderer.set_mv_mat(extr_gl)
geo_renderer.set_model(vertices[faces.reshape(-1)].astype(np.float32), normals[faces.reshape(-1)].astype(np.float32))
geo_img = geo_renderer.render()[:, :, :3]
geo_img = (geo_img * 255).astype(np.uint8)
cv.imwrite(output_dir + '/live_geometry/rendered_geometry/%s.jpg' % item['data_idx'], geo_img)
if self.opt['test'].get('render_skeleton', False):
import trimesh
from utils.visualize_skeletons import construct_skeletons
skel_vertices, skel_faces = construct_skeletons(items['joints'][0].cpu().numpy(), items['kin_parent'][0].cpu().numpy())
skel_mesh = trimesh.Trimesh(skel_vertices, skel_faces, process = False)
if phong_renderer is None:
phong_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'phong_geometry', bg_color = (1, 1, 1))
extr, intr = item['extr'], item['intr']
proj_mat = gl_perspective_projection_matrix(intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2], item['img_w'], item['img_h'])
phong_renderer.set_mvp_mat(proj_mat @ extr)
extr_gl = extr.copy()
extr_gl[1:3, :3] *= -1
phong_renderer.set_mv_mat(extr_gl)
phong_renderer.set_model(skel_vertices[skel_faces.reshape(-1)], skel_mesh.vertex_normals.astype(np.float32)[skel_faces.reshape(-1)])
skel_img = phong_renderer.render()[:, :, :3]
skel_img = (skel_img * 255).astype(np.uint8)
cv.imwrite(output_dir + '/live_skeleton/%s.jpg' % item['data_idx'], skel_img)
if not self.opt['test']['infer_rgb']:
time_ani_end = time.time()
print('Animating one frame costs %f secs' % (time_ani_end - time_ani_start))
torch.cuda.empty_cache()
continue
if self.opt['test']['depth_guided_sampling']['flag']:
if pos_renderer is None:
pos_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'position')
extr, intr = item['extr'], item['intr']
proj_mat = gl_perspective_projection_matrix(intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2], item['img_w'], item['img_h'])
pos_renderer.set_mvp_mat(proj_mat @ extr)
pos_renderer.set_model(vertices[faces.reshape(-1)].astype(np.float32))
pos_map = pos_renderer.render()[..., :3]
nonzero_flag = np.linalg.norm(pos_map, axis = -1) > 1e-6
pos_map[nonzero_flag] = np.einsum('ij,vj->vi', extr[:3, :3], pos_map[nonzero_flag]) + extr[:3, 3]
dist_map = np.linalg.norm(pos_map, axis = -1)
infer_mask = cv.dilate(nonzero_flag.astype(np.uint8), np.ones((5, 5), np.uint8))
uv = np.argwhere(infer_mask > 0)[:, [1, 0]].astype(np.int64)
near = np.zeros(uv.shape[0], np.float32)
far = np.zeros(uv.shape[0], np.float32)
ray_d, ray_o = get_rays(uv, item['extr'], item['intr'])
dist = dist_map[uv[:, 1], uv[:, 0]]
items['uv'] = torch.from_numpy(uv).to(torch.long).to(config.device).unsqueeze(0)
items['near'] = torch.from_numpy(near).to(torch.float32).to(config.device).unsqueeze(0)
items['far'] = torch.from_numpy(far).to(torch.float32).to(config.device).unsqueeze(0)
items['ray_o'] = torch.from_numpy(ray_o).to(torch.float32).to(config.device).unsqueeze(0)
items['ray_d'] = torch.from_numpy(ray_d).to(torch.float32).to(config.device).unsqueeze(0)
items['dist'] = torch.from_numpy(dist).to(torch.float32).to(config.device).unsqueeze(0)
output = self.network.render(items,
depth_guided_sampling = self.opt['test']['depth_guided_sampling'])
# re-infer for output['acc_map'] < 0.99, because the rendered depth is not so accurate on boundaries of self-occluded regions
uv = items['uv'][0].to(torch.long)
reinfer_mask = output['acc_map'] < 0.99
for k in ['uv', 'near', 'far', 'ray_o', 'ray_d', 'dist']:
items[k] = items[k][reinfer_mask].unsqueeze(0)
reinfer_output = self.network.render(items, depth_guided_sampling = {'flag': False})
output['rgb_map'][0, reinfer_mask[0]] = reinfer_output['rgb_map'][0]
output['acc_map'][0, reinfer_mask[0]] = reinfer_output['acc_map'][0]
# save rgb_map & acc_map
if 'rgb_map' in output:
rgb_map = torch.zeros((item['img_h'], item['img_w'], 3), dtype = torch.float32, device = config.device).fill_(config.bg_color)
rgb_map[uv[:, 1], uv[:, 0]] = output['rgb_map'][0]
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/rgb_map/%s.png' % item['data_idx'], (rgb_map.cpu().numpy()).astype(np.uint8))
if 'acc_map' in output:
acc_map = torch.zeros((item['img_h'], item['img_w']), dtype = torch.float32, device = config.device)
acc_map[uv[:, 1], uv[:, 0]] = output['acc_map'][0]
acc_map.clip_(0., 1.)
cv.imwrite(output_dir + '/acc_map/%s.png' % item['data_idx'], (acc_map.cpu().numpy() * 255).astype(np.uint8))
time_ani_end = time.time()
print('Animating one frame costs %f secs' % (time_ani_end - time_ani_start))
torch.cuda.empty_cache()
@torch.no_grad()
def mini_test(self):
import cv2 as cv
self.network.eval()
# training data
pose_idx, view_idx = self.opt['train'].get('eval_training_ids', (310, 19))
item = self.dataset.getitem(0,
pose_idx = pose_idx,
view_idx = view_idx,
training = False,
eval = True,
img_h = self.dataset.img_heights[view_idx],
img_w = self.dataset.img_widths[view_idx],
extr = self.dataset.extr_mats[view_idx],
intr = self.dataset.intr_mats[view_idx])
items = net_util.to_cuda(item, add_batch = True)
output = self.network.render(items, depth_guided_sampling = {'flag': True, 'near_sur_dist': 0.05, 'N_ray_samples': 32})
if 'rgb_map' in output:
rgb_map = torch.zeros((item['img_h'], item['img_w'], 3), dtype = torch.float32, device = config.device)
acc_map = torch.zeros((item['img_h'], item['img_w']), dtype = torch.float32, device = config.device)
uv = items['uv'][0].to(torch.long)
rgb_map[uv[:, 1], uv[:, 0]] = output['rgb_map'][0]
acc_map[uv[:, 1], uv[:, 0]] = output['acc_map'][0]
rgb_map.clip_(0., 1.)
acc_map.clip_(0., 1.)
# cv.imshow('rgb_map', rgb_map.cpu().numpy())
# cv.imshow('acc_map', acc_map.cpu().numpy())
# cv.waitKey(0)
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval/training'
os.makedirs(output_dir, exist_ok = True)
cv.imwrite(output_dir + '/nerf_batch_%d.jpg' % self.iter_idx, (rgb_map.cpu().numpy() * 255).astype(np.uint8))
# testing data
pose_idx, view_idx = self.opt['train'].get('eval_testing_ids', (2012, 21))
item = self.dataset.getitem(0,
pose_idx = pose_idx,
view_idx = view_idx,
training = False,
eval = True,
img_h = self.dataset.img_heights[view_idx],
img_w = self.dataset.img_widths[view_idx],
extr = self.dataset.extr_mats[view_idx],
intr = self.dataset.intr_mats[view_idx])
items = net_util.to_cuda(item, add_batch = True)
output = self.network.render(items, depth_guided_sampling = {'flag': True, 'near_sur_dist': 0.05, 'N_ray_samples': 32})
if 'rgb_map' in output:
rgb_map = torch.zeros((item['img_h'], item['img_w'], 3), dtype = torch.float32, device = config.device)
acc_map = torch.zeros((item['img_h'], item['img_w']), dtype = torch.float32, device = config.device)
uv = items['uv'][0].to(torch.long)
rgb_map[uv[:, 1], uv[:, 0]] = output['rgb_map'][0]
acc_map[uv[:, 1], uv[:, 0]] = output['acc_map'][0]
rgb_map.clip_(0., 1.)
acc_map.clip_(0., 1.)
# cv.imshow('rgb_map', rgb_map.cpu().numpy())
# cv.imshow('acc_map', acc_map.cpu().numpy())
# cv.waitKey(0)
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval/testing'
os.makedirs(output_dir, exist_ok = True)
cv.imwrite(output_dir + '/nerf_batch_%d.jpg' % self.iter_idx, (rgb_map.cpu().numpy() * 255).astype(np.uint8))
self.set_train()
@torch.no_grad()
def render_depth_sequences(self):
from utils.renderer import Renderer, gl_perspective_projection_matrix
from utils.net_util import to_cuda
from utils.obj_io import save_mesh_as_ply
import cv2 as cv
MvRgbDataset = __import__(self.opt['train'].get('dataset', 'dataset.dataset_mv_rgb_slrf'), fromlist = ['MvRgbDataset']).MvRgbDataset
training_dataset = MvRgbDataset(**self.opt['train']['data'], training = False)
renderers = [Renderer(training_dataset.img_widths[i], training_dataset.img_heights[i], shader_name = 'position') for i in range(training_dataset.view_num)]
self.set_dataset(training_dataset)
self.set_network(AvatarNet(self.opt['model']).to(config.device))
self.network.eval()
self.set_net_dict({
'network': self.network
})
self.load_ckpt(self.opt['train']['net_ckpt_dir'] + '/epoch_latest', False)
for view_idx in range(training_dataset.view_num):
os.makedirs(training_dataset.data_dir + '/depths/cam%02d' % view_idx, exist_ok = True)
for idx in range(len(training_dataset)):
item = training_dataset.getitem(idx, training = False)
items = to_cuda(item, add_batch = True)
vertices, faces, normals = self.test_geometry(items, 'live', testing_res = (256, 256, 256))
# # debug
# save_mesh_as_ply('./debug/live_geometry_%s.ply' % item['data_idx'], vertices, faces, normals)
# exit(1)
vertices = vertices.astype(np.float32)
vertices = vertices[faces.reshape(-1)]
for view_idx in range(training_dataset.view_num):
renderer = renderers[view_idx]
intr = training_dataset.intr_mats[view_idx]
extr = training_dataset.extr_mats[view_idx]
proj_mat = gl_perspective_projection_matrix(intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2], renderer.img_w, renderer.img_h)
renderer.set_mvp_mat(proj_mat @ extr)
renderer.set_model(vertices)
pos_map = renderer.render()[..., :3]
mask = np.linalg.norm(pos_map, axis = -1) > 1e-6
pos_map[mask] = np.einsum('ij,vj->vi', extr[:3, :3], pos_map[mask]) + extr[:3, 3]
depth_map = (pos_map[:, :, 2] * 1000).astype(np.uint16)
cv.imwrite(training_dataset.data_dir + '/depths/cam%02d/%08d.png' % (view_idx, int(item['data_idx'])), depth_map)
if __name__ == '__main__':
torch.manual_seed(31359)
np.random.seed(31359)
from argparse import ArgumentParser
arg_parser = ArgumentParser()
arg_parser.add_argument('-c', '--config_path', type = str, help = 'Configuration file path.')
arg_parser.add_argument('-m', '--mode', type = str, help = 'Running mode.', choices = ['train', 'test', 'render_depth_sequences', None], default = None)
args = arg_parser.parse_args()
config.load_global_opt(args.config_path)
if args.mode is not None:
config.opt['mode'] = args.mode
trainer = AvatarTrainer(config.opt)
if config.opt['mode'] == 'train':
trainer.run()
elif config.opt['mode'] == 'test':
trainer.test()
elif config.opt['mode'] == 'render_depth_sequences':
trainer.render_depth_sequences()
else:
raise NotImplementedError('Invalid running mode!')