-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdemo.py
executable file
·269 lines (211 loc) · 10.8 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys
import torch
import argparse
import torch.nn as nn
import torchvision.models as models
from doctor.meminf import *
from doctor.modinv import *
from doctor.attrinf import *
from doctor.modsteal import *
from demoloader.train import *
from demoloader.DCGAN import *
from utils.define_models import *
from demoloader.dataloader import *
def train_model(PATH, device, train_set, test_set, model, use_DP, noise, norm, delta):
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=64, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=64, shuffle=True, num_workers=2)
model = model_training(train_loader, test_loader, model, device, use_DP, noise, norm, delta)
acc_train = 0
acc_test = 0
for i in range(100):
print("<======================= Epoch " + str(i + 1) + " =======================>")
print("target training")
acc_train = model.train()
print("target testing")
acc_test = model.test()
overfitting = round(acc_train - acc_test, 6)
print('The overfitting rate is %s' % overfitting)
FILE_PATH = PATH + "_target.pth"
model.saveModel(FILE_PATH)
print("Saved target model!!!")
print("Finished training!!!")
return acc_train, acc_test, overfitting
def train_DCGAN(PATH, device, train_set, name):
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=128, shuffle=True, num_workers=2)
if name.lower() == 'fmnist':
D = FashionDiscriminator().eval()
G = FashionGenerator().eval()
else:
D = Discriminator(ngpu=1).eval()
G = Generator(ngpu=1).eval()
print("Starting Training DCGAN...")
GAN = GAN_training(train_loader, D, G, device)
for i in range(200):
print("<======================= Epoch " + str(i + 1) + " =======================>")
GAN.train()
GAN.saveModel(PATH + "_discriminator.pth", PATH + "_generator.pth")
def test_meminf(PATH, device, num_classes, target_train, target_test, shadow_train, shadow_test, target_model,
shadow_model, train_shadow, use_DP, noise, norm, delta, mode):
batch_size = 64
if train_shadow:
shadow_trainloader = torch.utils.data.DataLoader(
shadow_train, batch_size=batch_size, shuffle=True, num_workers=2)
shadow_testloader = torch.utils.data.DataLoader(
shadow_test, batch_size=batch_size, shuffle=True, num_workers=2)
loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(shadow_model.parameters(), lr=1e-2, momentum=0.9, weight_decay=5e-4)
train_shadow_model(PATH, device, shadow_model, shadow_trainloader, shadow_testloader, use_DP, noise, norm, loss,
optimizer, delta)
if mode == 0 or mode == 3:
attack_trainloader, attack_testloader = get_attack_dataset_with_shadow(
target_train, target_test, shadow_train, shadow_test, batch_size)
else:
attack_trainloader, attack_testloader = get_attack_dataset_without_shadow(target_train, target_test, batch_size)
# for white box
if mode == 2 or mode == 3:
gradient_size = get_gradient_size(target_model)
total = gradient_size[0][0] // 2 * gradient_size[0][1] // 2
if mode == 0:
attack_model = ShadowAttackModel(num_classes)
attack_mode0(PATH + "_target.pth", PATH + "_shadow.pth", PATH, device, attack_trainloader, attack_testloader,
target_model, shadow_model, attack_model, 1, num_classes)
elif mode == 1:
attack_model = PartialAttackModel(num_classes)
attack_mode1(PATH + "_target.pth", PATH, device, attack_trainloader, attack_testloader, target_model,
attack_model, 1, num_classes)
elif mode == 2:
attack_model = WhiteBoxAttackModel(num_classes, total)
attack_mode2(PATH + "_target.pth", PATH, device, attack_trainloader, attack_testloader, target_model,
attack_model, 1, num_classes)
elif mode == 3:
attack_model = WhiteBoxAttackModel(num_classes, total)
attack_mode3(PATH + "_target.pth", PATH + "_shadow.pth", PATH, device,
attack_trainloader, attack_testloader, target_model, shadow_model, attack_model, 1, num_classes)
else:
raise Exception("Wrong mode")
# attack_mode0(PATH + "_target.pth", PATH + "_shadow.pth", PATH, device, attack_trainloader, attack_testloader, target_model, shadow_model, attack_model, 1, num_classes)
# attack_mode1(PATH + "_target.pth", PATH, device, attack_trainloader, attack_testloader, target_model, attack_model, 1, num_classes)
# attack_mode2(PATH + "_target.pth", PATH, device, attack_trainloader, attack_testloader, target_model, attack_model, 1, num_classes)
def test_modinv(PATH, device, num_classes, target_train, target_model, name):
size = (1,) + tuple(target_train[0][0].shape)
target_model, evaluation_model = load_data(PATH + "_target.pth", PATH + "_eval.pth", target_model,
models.resnet18(num_classes=num_classes))
# CCS 15
modinv_ccs = ccs_inversion(target_model, size, num_classes, 1, 3000, 100, 0.001, 0.003, device)
train_loader = torch.utils.data.DataLoader(target_train, batch_size=1, shuffle=False)
ccs_result = modinv_ccs.reverse_mse(train_loader)
# Secret Revealer
if name.lower() == 'fmnist':
D = FashionDiscriminator(ngpu=1).eval()
G = FashionGenerator(ngpu=1).eval()
else:
D = Discriminator(ngpu=1).eval()
G = Generator(ngpu=1).eval()
PATH_D = PATH + "_discriminator.pth"
PATH_G = PATH + "_generator.pth"
D, G, iden = prepare_GAN(name, D, G, PATH_D, PATH_G)
modinv_revealer = revealer_inversion(G, D, target_model, evaluation_model, iden, device)
def test_attrinf(PATH, device, num_classes, target_train, target_test, target_model):
attack_length = int(0.5 * len(target_train))
rest = len(target_train) - attack_length
attack_train, _ = torch.utils.data.random_split(target_train, [attack_length, rest])
attack_test = target_test
attack_trainloader = torch.utils.data.DataLoader(
attack_train, batch_size=64, shuffle=True, num_workers=2)
attack_testloader = torch.utils.data.DataLoader(
attack_test, batch_size=64, shuffle=True, num_workers=2)
image_size = [1] + list(target_train[0][0].shape)
train_attack_model(
PATH + "_target.pth", PATH, num_classes, device, target_model, attack_trainloader, attack_testloader,
image_size)
def test_modsteal(PATH, device, train_set, test_set, target_model, attack_model):
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=64, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=64, shuffle=True, num_workers=2)
loss = nn.MSELoss()
optimizer = optim.SGD(attack_model.parameters(), lr=0.01, momentum=0.9)
attacking = train_steal_model(
train_loader, test_loader, target_model, attack_model, PATH + "_target.pth", PATH + "_modsteal.pth", device, 64,
loss, optimizer)
for i in range(100):
print("[Epoch %d/%d] attack training" % ((i + 1), 100))
attacking.train_with_same_distribution()
print("Finished training!!!")
attacking.saveModel()
acc_test, agreement_test = attacking.test()
print("Saved Target Model!!!\nstolen test acc = %.3f, stolen test agreement = %.3f\n" % (acc_test, agreement_test))
def str_to_bool(string):
if isinstance(string, bool):
return string
if string.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif string.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-g', '--gpu', type=str, default="0")
parser.add_argument('-a', '--attributes', type=str, default="race",
help="For attrinf, two attributes should be in format x_y e.g. race_gender")
parser.add_argument('-dn', '--dataset_name', type=str, default="UTKFace")
parser.add_argument('-at', '--attack_type', type=int, default=0)
parser.add_argument('-tm', '--train_model', action='store_true')
parser.add_argument('-ts', '--train_shadow', action='store_true')
parser.add_argument('-ud', '--use_DP', action='store_true', )
parser.add_argument('-ne', '--noise', type=float, default=1.3)
parser.add_argument('-nm', '--norm', type=float, default=1.5)
parser.add_argument('-d', '--delta', type=float, default=1e-5)
parser.add_argument('-m', '--mode', type=int, default=0)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device = torch.device("cuda:0")
#device = torch.device("mps") # osx arm64 gpu
dataset_name = args.dataset_name
attr = args.attributes
if "_" in attr:
attr = attr.split("_")
root = "../data"
use_DP = args.use_DP
noise = args.noise
norm = args.norm
delta = args.delta
mode = args.mode
train_shadow = args.train_shadow
TARGET_ROOT = "./demoloader/trained_model/"
if not os.path.exists(TARGET_ROOT):
print(f"Create directory named {TARGET_ROOT}")
os.makedirs(TARGET_ROOT)
TARGET_PATH = TARGET_ROOT + dataset_name
num_classes, target_train, target_test, shadow_train, shadow_test, target_model, shadow_model = prepare_dataset(
dataset_name, attr, root)
if args.train_model:
train_model(TARGET_PATH, device, target_train, target_test, target_model, use_DP, noise, norm, delta)
# membership inference
if args.attack_type == 0:
test_meminf(TARGET_PATH, device, num_classes, target_train, target_test, shadow_train, shadow_test,
target_model, shadow_model, train_shadow, use_DP, noise, norm, delta, mode)
# model inversion
elif args.attack_type == 1:
train_DCGAN(TARGET_PATH, device, shadow_test + shadow_train, dataset_name)
test_modinv(TARGET_PATH, device, num_classes, target_train, target_model, dataset_name)
# attribut inference
elif args.attack_type == 2:
# check num_classes type , redefine the num_classes
if not isinstance(num_classes, int):
num_classes = num_classes[1]
test_attrinf(TARGET_PATH, device, num_classes, target_train, target_test, target_model)
# model stealing
elif args.attack_type == 3:
test_modsteal(TARGET_PATH, device, shadow_train + shadow_test, target_test, target_model, shadow_model)
else:
sys.exit("we have not supported this mode yet! 0c0")
# target_model = models.resnet18(num_classes=num_classes)
# train_model(TARGET_PATH, device, target_train + shadow_train, target_test + shadow_test, target_model)
if __name__ == "__main__":
main()