-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathestimator.py
126 lines (106 loc) · 5.17 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import cv2
from others.superpoint import process_image
from utils.base_utils import pts_to_hpts, hpts_to_pts
def normalize_coordinates_camera(pts1, pts2, K1, K2):
pts1, pts2 = np.ascontiguousarray(pts1, np.float32), np.ascontiguousarray(pts2, np.float32)
pts_l_norm = hpts_to_pts(pts_to_hpts(pts1) @ np.linalg.inv(K1).T)
pts_r_norm = hpts_to_pts(pts_to_hpts(pts2) @ np.linalg.inv(K2).T)
return pts_l_norm, pts_r_norm
class RANSACEstimator:
def __init__(self,cfg):
self.configs=cfg
def pose_estimate(self, pts1, pts2, K1, K2, *args, **kwargs):
# f_avg = (K1[0, 0] + K2[0, 0]) / 2
pts_l_norm, pts_r_norm = normalize_coordinates_camera(pts1, pts2, K1, K2)
E, mask = cv2.findEssentialMat(pts_l_norm, pts_r_norm, focal=1.0, pp=(0., 0.),
method=cv2.RANSAC, prob=self.configs['confidence'],
threshold=self.configs['thresh'])
points, R_est, t_est, mask_pose = cv2.recoverPose(E, pts_l_norm, pts_r_norm)
return mask[:,0].astype(np.bool), R_est, t_est
def fundamental_matrix_estimate(self, pts1, pts2):
F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_RANSAC, ransacReprojThreshold=self.configs['thresh'],
confidence=self.configs['confidence'])
return mask[:,0].astype(np.bool), F
def homography_estimation(self,pts1,pts2):
H, mask = cv2.findHomography(pts1[:,None,:2],pts2[:,None,:2],method=cv2.RANSAC,ransacReprojThreshold=self.configs['thresh'])
return H
class RescaleRANSACEstimator:
@staticmethod
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
if len(kpts0) < 5:
return None
f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
norm_thresh = thresh / f_mean
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf,
method=cv2.RANSAC)
if E is None:
import ipdb; ipdb.set_trace()
assert E is not None
best_num_inliers = 0
ret = None
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(
_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t[:, 0], mask.ravel() > 0)
return ret
def __init__(self,cfg):
self.resize=cfg['resize']
self.resize_float=False if 'resize_float' in cfg and not cfg['resize_float'] else True
self.round=True if 'round' in cfg and cfg['round'] else False
def pose_estimate(self, pts1, pts2, K1, K2, image1, image2):
pts1, pts2, K1, K2 = np.copy(pts1), np.copy(pts2), np.copy(K1), np.copy(K2)
resize = (self.resize,) if isinstance(self.resize, int) else self.resize
_,_,scales=process_image(image1,resize=resize,resize_float=self.resize_float)
scales=np.ascontiguousarray(scales)
pts1=pts1/scales[None,:]
K1[0,0]/=scales[0]
K1[0,2]/=scales[0]
K1[1,1]/=scales[1]
K1[1,2]/=scales[1]
_,_,scales=process_image(image2,resize=resize,resize_float=self.resize_float)
scales = np.ascontiguousarray(scales)
pts2=pts2/scales[None,:]
K2[0,0]/=scales[0]
K2[0,2]/=scales[0]
K2[1,1]/=scales[1]
K2[1,2]/=scales[1]
if self.round:
pts1=np.round(pts1)
pts2=np.round(pts2)
results=self.estimate_pose(pts1,pts2,K1,K2,1.0)
if results is not None:
R, t, mask = results
else:
R, t, mask=np.eye(3), np.zeros(3), np.zeros(pts1.shape[0],np.bool)
return mask, R, t[:,None]
class LMEDSPoseEstimator:
def __init__(self,cfg):
self.configs=cfg
def pose_estimate(self, pts1, pts2, K1, K2, *args, **kwargs):
if self.configs['model']=='essential':
pts_l_norm, pts_r_norm = normalize_coordinates_camera(pts1, pts2, K1, K2)
E, mask = cv2.findEssentialMat(pts_l_norm, pts_r_norm, focal=1.0, pp=(0., 0.), method=cv2.LMEDS, prob=self.configs['confidence'])
points, R_est, t_est, mask_pose = cv2.recoverPose(E, pts_l_norm, pts_r_norm)
elif self.configs['model']=='fundamental':
mask, F = self.fundamental_matrix_estimate(pts1,pts2)
pts1, pts2 = normalize_coordinates_camera(pts1, pts2, K1, K2)
E = K2.T @ F @ K1
points, R_est, t_est, mask_pose = cv2.recoverPose(E, pts1, pts2, mask=mask[:, None].astype(np.uint8))
mask=mask[:,None]
else:
raise NotImplementedError
return mask[:,0].astype(np.bool), R_est, t_est
def fundamental_matrix_estimate(self, pts1, pts2):
F, lmeds_mask = cv2.findFundamentalMat(pts1, pts2, method=cv2.LMEDS, confidence=self.configs['confidence'])
return lmeds_mask[:,0].astype(np.bool), F
name2estimator={
'ransac': RANSACEstimator,
'rescale_ransac': RescaleRANSACEstimator,
'lmeds': LMEDSPoseEstimator,
}