-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdetector.py
66 lines (58 loc) · 2.66 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import numpy as np
import torch
from others.superpoint import SuperPoint, process_image, process_image_fn
class SIFTDetector:
def __init__(self, cfg):
num_kp = 2000
contrastThreshold = 1e-5
self.sift = cv2.xfeatures2d.SIFT_create(nfeatures=num_kp, contrastThreshold=contrastThreshold)
def __call__(self, img):
cv_kp, desc = self.sift.detectAndCompute(img, None)
kp = np.array([[_kp.pt[0], _kp.pt[1]] for _kp in cv_kp]) # N*4
sizes = np.asarray([_kp.size for _kp in cv_kp])
responses = np.asarray([_kp.response for _kp in cv_kp])
angles = np.asarray([_kp.angle for _kp in cv_kp])
kp=np.concatenate([kp,responses[:,None],sizes[:,None],angles[:,None]],1)
return kp, desc
class SuperPointDetector:
def __init__(self,cfg):
self.sp2=SuperPoint(cfg).eval()
self.sp2=self.sp2.cuda()
self.cfg=cfg
def extract_kps_desc_scores(self,img):
resize=(self.cfg['resize'],) if isinstance(self.cfg['resize'],int) else self.cfg['resize']
resize_float = False if 'resize_float' in self.cfg and not self.cfg['resize_float'] else True
image, image_tensor, scales = process_image(img,'cuda',resize, resize_float)
with torch.no_grad():
sp_results=self.sp2({'image':image_tensor})
kps=sp_results['keypoints'][0].detach().cpu().numpy()
desc=sp_results['descriptors'][0].detach().cpu().numpy()
scores=sp_results['scores'][0].detach().cpu().numpy()
desc=desc.T
kps*=np.asarray(scales)[None,:]
return kps, desc, scores
def extract_kps_desc_scores_fn(self,img_fn):
resize=(self.cfg['resize'],) if isinstance(self.cfg['resize'],int) else self.cfg['resize']
resize_float = False if 'resize_float' in self.cfg and not self.cfg['resize_float'] else True
image, image_tensor, scales = process_image_fn(img_fn,'cuda',resize, resize_float)
with torch.no_grad():
sp_results=self.sp2({'image':image_tensor})
kps=sp_results['keypoints'][0].detach().cpu().numpy()
desc=sp_results['descriptors'][0].detach().cpu().numpy()
scores=sp_results['scores'][0].detach().cpu().numpy()
desc=desc.T
kps*=np.asarray(scales)[None,:]
return kps, desc, scores
def __call__(self, img, *args, **kwargs):
if len(args)>0:
fn=args[0]
kps, desc, scores = self.extract_kps_desc_scores_fn(fn)
else:
kps, desc, scores = self.extract_kps_desc_scores(img)
kps=np.concatenate([kps,scores[:,None]],1)
return kps, desc
name2det = {
'superpoint': SuperPointDetector,
'sift': SIFTDetector,
}