Skip to content

Latest commit

 

History

History
40 lines (30 loc) · 3.96 KB

README.md

File metadata and controls

40 lines (30 loc) · 3.96 KB

Squeeze-and-excitation networks

Introduction

@inproceedings{hu2018squeeze,
  title={Squeeze-and-excitation networks},
  author={Hu, Jie and Shen, Li and Sun, Gang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={7132--7141},
  year={2018}
}

Results and models

2d Human Pose Estimation

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_seresnet_50 256x192 0.728 0.900 0.809 0.784 0.940 ckpt log
pose_seresnet_50 384x288 0.748 0.905 0.819 0.799 0.941 ckpt log
pose_seresnet_101 256x192 0.734 0.904 0.815 0.790 0.942 ckpt log
pose_seresnet_101 384x288 0.753 0.907 0.823 0.805 0.943 ckpt log
pose_seresnet_152* 256x192 0.730 0.899 0.810 0.786 0.940 ckpt log
pose_seresnet_152* 384x288 0.753 0.906 0.823 0.806 0.945 ckpt log

Note that * means without imagenet pre-training.

Results on MPII val set.

Arch Input Size Mean Mean@0.1 ckpt log
pose_seresnet_50 256x256 0.885 0.334 ckpt log
pose_seresnet_101 256x256 0.884 0.336 ckpt log
pose_seresnet_152* 256x256 0.884 0.329 ckpt log

Note that * means without imagenet pre-training.