-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmini_network_add_map.py
147 lines (106 loc) · 6.18 KB
/
mini_network_add_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import tensorflow as tf
import param as P
from algo.ppo_add_map import Policy_net, PPOTrain
# for mini game
_SIZE_MINI_INPUT = 20
_SIZE_MINI_ACTIONS = 10
class MiniNetwork(object):
def __init__(self, sess=None, summary_writer=tf.summary.FileWriter("logs/"), rl_training=False,
reuse=False, cluster=None, index=0, device='/gpu:0',
ppo_load_path=None, ppo_save_path=None,
ob_space_add=4, act_space_add=5, freeze_head=True):
self.policy_model_path_load = ppo_load_path + "mini"
self.policy_model_path_save = ppo_save_path + "mini"
self.rl_training = rl_training
self.use_norm = True
self.reuse = reuse
self.sess = sess
self.cluster = cluster
self.index = index
self.device = device
self.ob_space_add = ob_space_add
self.act_space_add = act_space_add
self.freeze_head = freeze_head
self._create_graph()
self.rl_saver = tf.train.Saver()
self.summary_writer = summary_writer
def initialize(self):
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
def reset_old_network(self):
self.policy_ppo.assign_policy_parameters()
self.policy_ppo.reset_mean_returns()
self.sess.run(self.results_sum.assign(0))
self.sess.run(self.game_num.assign(0))
def _create_graph(self):
if self.reuse:
tf.get_variable_scope().reuse_variables()
assert tf.get_variable_scope().reuse
worker_device = "/job:worker/task:%d" % self.index + self.device
with tf.device(tf.train.replica_device_setter(worker_device=worker_device, cluster=self.cluster)):
self.results_sum = tf.get_variable(name="results_sum", shape=[], initializer=tf.zeros_initializer)
self.game_num = tf.get_variable(name="game_num", shape=[], initializer=tf.zeros_initializer)
self.global_steps = tf.get_variable(name="global_steps", shape=[], initializer=tf.zeros_initializer)
self.win_rate = self.results_sum / self.game_num
self.mean_win_rate = tf.summary.scalar('mean_win_rate_dis', self.results_sum / self.game_num)
self.merged = tf.summary.merge([self.mean_win_rate])
mini_scope = "MiniPolicyNN"
with tf.variable_scope(mini_scope):
ob_space = _SIZE_MINI_INPUT
act_space_array = _SIZE_MINI_ACTIONS
self.policy = Policy_net('policy', self.sess, ob_space, self.ob_space_add,
act_space_array, self.act_space_add, self.freeze_head)
self.policy_old = Policy_net('old_policy', self.sess, ob_space, self.ob_space_add,
act_space_array, self.act_space_add, self.freeze_head)
self.policy_ppo = PPOTrain('PPO', self.sess, self.policy, self.policy_old, lr=P.mini_lr_add, epoch_num=P.mini_epoch_num)
var_train_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
var_all_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
variables_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.policy.scope)
old_variables_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.policy_old.scope)
map_variables_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.policy.map_variable_scope)
old_map_variables_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.policy_old.map_variable_scope)
variables_to_restore += old_variables_to_restore
# remove layers for added obs
variables_to_restore = [v for v in variables_to_restore if len(v.name.split('/')) > 2 and (v.name.split('/')[-2] != 'DenseLayer3')]
# remove layer weight for added action
variables_to_restore = [v for v in variables_to_restore if len(v.name.split('/')) > 2 and v.name.split('/')[-2] != 'add_output_layer']
# remove layers for added map
variables_to_restore = [v for v in variables_to_restore if v not in map_variables_to_restore and v not in old_map_variables_to_restore]
print('variables_to_restore:', variables_to_restore)
self.old_policy_saver = tf.train.Saver(var_list=variables_to_restore)
self.new_policy_saver = tf.train.Saver(var_list=var_all_list)
def Update_result(self, result_list):
win = 0
for i in result_list:
if i > 0:
win += 1
self.sess.run(self.results_sum.assign_add(win))
self.sess.run(self.game_num.assign_add(len(result_list)))
def Update_summary(self, counter):
print("Update summary........")
policy_summary = self.policy_ppo.get_summary_dis()
self.summary_writer.add_summary(policy_summary, counter)
summary = self.sess.run(self.merged)
self.summary_writer.add_summary(summary, counter)
self.sess.run(self.global_steps.assign(counter))
print("Update summary finished!")
steps = int(self.sess.run(self.global_steps))
win_game = int(self.sess.run(self.results_sum))
all_game = int(self.sess.run(self.game_num))
#print('all_game:', all_game)
win_rate = win_game / float(all_game) if all_game != 0 else 0.
return steps, win_rate
def get_win_rate(self):
return float(self.sess.run(self.win_rate))
def Update_policy(self, buffer):
self.policy_ppo.ppo_train_dis(buffer.observations, buffer.obs_add, buffer.obs_map, buffer.tech_actions,
buffer.rewards, buffer.values, buffer.values_next, buffer.gaes, buffer.returns, verbose=False)
def get_global_steps(self):
return int(self.sess.run(self.global_steps))
def save_policy(self):
self.new_policy_saver.save(self.sess, self.policy_model_path_save)
print("policy has been saved in", self.policy_model_path_save)
def restore_policy(self):
self.old_policy_saver.restore(self.sess, self.policy_model_path_load)
print("Restore policy from", self.policy_model_path_load)