-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmodel.py
908 lines (727 loc) · 41.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
import math
import numpy as np
import tensorflow as tf
import time
from tqdm import tqdm
from base_model import *
from bbox import *
from utils.nn import *
class ObjectDetector(BaseModel):
def build(self):
""" Build the model. """
if self.basic_model=='vgg16':
self.build_basic_vgg16()
elif self.basic_model=='resnet50':
self.build_basic_resnet50()
elif self.basic_model=='resnet101':
self.build_basic_resnet101()
else:
self.build_basic_resnet152()
self.build_anchors()
self.build_rpn()
self.build_rcn()
self.build_final()
def build_basic_vgg16(self):
""" Build the basic VGG16 net. """
print("Building the basic VGG16 net...")
bn = self.batch_norm
imgs = tf.placeholder(tf.float32, [self.batch_size]+self.img_shape)
is_train = tf.placeholder(tf.bool)
conv1_1_feats = convolution(imgs, 3, 3, 64, 1, 1, 'conv1_1')
conv1_1_feats = batch_norm(conv1_1_feats, 'bn1_1', is_train, bn, 'relu')
conv1_2_feats = convolution(conv1_1_feats, 3, 3, 64, 1, 1, 'conv1_2')
conv1_2_feats = batch_norm(conv1_2_feats, 'bn1_2', is_train, bn, 'relu')
pool1_feats = max_pool(conv1_2_feats, 2, 2, 2, 2, 'pool1')
conv2_1_feats = convolution(pool1_feats, 3, 3, 128, 1, 1, 'conv2_1')
conv2_1_feats = batch_norm(conv2_1_feats, 'bn2_1', is_train, bn, 'relu')
conv2_2_feats = convolution(conv2_1_feats, 3, 3, 128, 1, 1, 'conv2_2')
conv2_2_feats = batch_norm(conv2_2_feats, 'bn2_2', is_train, bn, 'relu')
pool2_feats = max_pool(conv2_2_feats, 2, 2, 2, 2, 'pool2')
conv3_1_feats = convolution(pool2_feats, 3, 3, 256, 1, 1, 'conv3_1')
conv3_1_feats = batch_norm(conv3_1_feats, 'bn3_1', is_train, bn, 'relu')
conv3_2_feats = convolution(conv3_1_feats, 3, 3, 256, 1, 1, 'conv3_2')
conv3_2_feats = batch_norm(conv3_2_feats, 'bn3_2', is_train, bn, 'relu')
conv3_3_feats = convolution(conv3_2_feats, 3, 3, 256, 1, 1, 'conv3_3')
conv3_3_feats = batch_norm(conv3_3_feats, 'bn3_3', is_train, bn, 'relu')
pool3_feats = max_pool(conv3_3_feats, 2, 2, 2, 2, 'pool3')
conv4_1_feats = convolution(pool3_feats, 3, 3, 512, 1, 1, 'conv4_1')
conv4_1_feats = batch_norm(conv4_1_feats, 'bn4_1', is_train, bn, 'relu')
conv4_2_feats = convolution(conv4_1_feats, 3, 3, 512, 1, 1, 'conv4_2')
conv4_2_feats = batch_norm(conv4_2_feats, 'bn4_2', is_train, bn, 'relu')
conv4_3_feats = convolution(conv4_2_feats, 3, 3, 512, 1, 1, 'conv4_3')
conv4_3_feats = batch_norm(conv4_3_feats, 'bn4_3', is_train, bn, 'relu')
pool4_feats = max_pool(conv4_3_feats, 2, 2, 2, 2, 'pool4')
conv5_1_feats = convolution(pool4_feats, 3, 3, 512, 1, 1, 'conv5_1')
conv5_1_feats = batch_norm(conv5_1_feats, 'bn5_1', is_train, bn, 'relu')
conv5_2_feats = convolution(conv5_1_feats, 3, 3, 512, 1, 1, 'conv5_2')
conv5_2_feats = batch_norm(conv5_2_feats, 'bn5_2', is_train, bn, 'relu')
conv5_3_feats = convolution(conv5_2_feats, 3, 3, 512, 1, 1, 'conv5_3')
conv5_3_feats = batch_norm(conv5_3_feats, 'bn5_3', is_train, bn, 'relu')
self.conv_feats = conv5_3_feats
self.conv_feat_shape = [40, 40, 512]
self.roi_warped_feat_shape = [16, 16, 512]
self.roi_pooled_feat_shape = [8, 8, 512]
self.imgs = imgs
self.is_train = is_train
print("Basic VGG16 net built.")
def basic_block(self, input_feats, name1, name2, is_train, bn, c, s=2):
""" A basic block of ResNets. """
branch1_feats = convolution_no_bias(input_feats, 1, 1, 4*c, s, s, name1+'_branch1')
branch1_feats = batch_norm(branch1_feats, name2+'_branch1', is_train, bn, None)
branch2a_feats = convolution_no_bias(input_feats, 1, 1, c, s, s, name1+'_branch2a')
branch2a_feats = batch_norm(branch2a_feats, name2+'_branch2a', is_train, bn, 'relu')
branch2b_feats = convolution_no_bias(branch2a_feats, 3, 3, c, 1, 1, name1+'_branch2b')
branch2b_feats = batch_norm(branch2b_feats, name2+'_branch2b', is_train, bn, 'relu')
branch2c_feats = convolution_no_bias(branch2b_feats, 1, 1, 4*c, 1, 1, name1+'_branch2c')
branch2c_feats = batch_norm(branch2c_feats, name2+'_branch2c', is_train, bn, None)
output_feats = branch1_feats + branch2c_feats
output_feats = nonlinear(output_feats, 'relu')
return output_feats
def basic_block2(self, input_feats, name1, name2, is_train, bn, c):
""" Another basic block of ResNets. """
branch2a_feats = convolution_no_bias(input_feats, 1, 1, c, 1, 1, name1+'_branch2a')
branch2a_feats = batch_norm(branch2a_feats, name2+'_branch2a', is_train, bn, 'relu')
branch2b_feats = convolution_no_bias(branch2a_feats, 3, 3, c, 1, 1, name1+'_branch2b')
branch2b_feats = batch_norm(branch2b_feats, name2+'_branch2b', is_train, bn, 'relu')
branch2c_feats = convolution_no_bias(branch2b_feats, 1, 1, 4*c, 1, 1, name1+'_branch2c')
branch2c_feats = batch_norm(branch2c_feats, name2+'_branch2c', is_train, bn, None)
output_feats = input_feats + branch2c_feats
output_feats = nonlinear(output_feats, 'relu')
return output_feats
def build_basic_resnet50(self):
""" Build the basic ResNet50 net. """
print("Building the basic ResNet50 net...")
bn = self.batch_norm
imgs = tf.placeholder(tf.float32, [self.batch_size]+self.img_shape)
is_train = tf.placeholder(tf.bool)
conv1_feats = convolution(imgs, 7, 7, 64, 2, 2, 'conv1')
conv1_feats = batch_norm(conv1_feats, 'bn_conv1', is_train, bn, 'relu')
pool1_feats = max_pool(conv1_feats, 3, 3, 2, 2, 'pool1')
res2a_feats = self.basic_block(pool1_feats, 'res2a', 'bn2a', is_train, bn, 64, 1)
res2b_feats = self.basic_block2(res2a_feats, 'res2b', 'bn2b', is_train, bn, 64)
res2c_feats = self.basic_block2(res2b_feats, 'res2c', 'bn2c', is_train, bn, 64)
res3a_feats = self.basic_block(res2c_feats, 'res3a', 'bn3a', is_train, bn, 128)
res3b_feats = self.basic_block2(res3a_feats, 'res3b', 'bn3b', is_train, bn, 128)
res3c_feats = self.basic_block2(res3b_feats, 'res3c', 'bn3c', is_train, bn, 128)
res3d_feats = self.basic_block2(res3c_feats, 'res3d', 'bn3d', is_train, bn, 128)
res4a_feats = self.basic_block(res3d_feats, 'res4a', 'bn4a', is_train, bn, 256)
res4b_feats = self.basic_block2(res4a_feats, 'res4b', 'bn4b', is_train, bn, 256)
res4c_feats = self.basic_block2(res4b_feats, 'res4c', 'bn4c', is_train, bn, 256)
res4d_feats = self.basic_block2(res4c_feats, 'res4d', 'bn4d', is_train, bn, 256)
res4e_feats = self.basic_block2(res4d_feats, 'res4e', 'bn4e', is_train, bn, 256)
res4f_feats = self.basic_block2(res4e_feats, 'res4f', 'bn4f', is_train, bn, 256)
res5a_feats = self.basic_block(res4f_feats, 'res5a', 'bn5a', is_train, bn, 512)
res5b_feats = self.basic_block2(res5a_feats, 'res5b', 'bn5b', is_train, bn, 512)
res5c_feats = self.basic_block2(res5b_feats, 'res5c', 'bn5c', is_train, bn, 512)
self.conv_feats = res5c_feats
self.conv_feat_shape = [20, 20, 2048]
self.roi_warped_feat_shape = [10, 10, 2048]
self.roi_pooled_feat_shape = [5, 5, 2048]
self.imgs = imgs
self.is_train = is_train
print("Basic ResNet50 net built.")
def build_basic_resnet101(self):
""" Build the basic ResNet101 net. """
print("Building the basic ResNet101 net...")
bn = self.batch_norm
imgs = tf.placeholder(tf.float32, [self.batch_size]+self.img_shape)
is_train = tf.placeholder(tf.bool)
conv1_feats = convolution(imgs, 7, 7, 64, 2, 2, 'conv1')
conv1_feats = batch_norm(conv1_feats, 'bn_conv1', is_train, bn, 'relu')
pool1_feats = max_pool(conv1_feats, 3, 3, 2, 2, 'pool1')
res2a_feats = self.basic_block(pool1_feats, 'res2a', 'bn2a', is_train, bn, 64, 1)
res2b_feats = self.basic_block2(res2a_feats, 'res2b', 'bn2b', is_train, bn, 64)
res2c_feats = self.basic_block2(res2b_feats, 'res2c', 'bn2c', is_train, bn, 64)
res3a_feats = self.basic_block(res2c_feats, 'res3a', 'bn3a', is_train, bn, 128)
temp = res3a_feats
for i in range(1, 4):
temp = self.basic_block2(temp, 'res3b'+str(i), 'bn3b'+str(i), is_train, bn, 128)
res3b3_feats = temp
res4a_feats = self.basic_block(res3b3_feats, 'res4a', 'bn4a', is_train, bn, 256)
temp = res4a_feats
for i in range(1, 23):
temp = self.basic_block2(temp, 'res4b'+str(i), 'bn4b'+str(i), is_train, bn, 256)
res4b22_feats = temp
res5a_feats = self.basic_block(res4b22_feats, 'res5a', 'bn5a', is_train, bn, 512)
res5b_feats = self.basic_block2(res5a_feats, 'res5b', 'bn5b', is_train, bn, 512)
res5c_feats = self.basic_block2(res5b_feats, 'res5c', 'bn5c', is_train, bn, 512)
self.conv_feats = res5c_feats
self.conv_feat_shape = [20, 20, 2048]
self.roi_warped_feat_shape = [10, 10, 2048]
self.roi_pooled_feat_shape = [5, 5, 2048]
self.imgs = imgs
self.is_train = is_train
print("Basic ResNet101 net built.")
def build_basic_resnet152(self):
""" Build the basic ResNet152 net. """
print("Building the basic ResNet152 net...")
bn = self.batch_norm
imgs = tf.placeholder(tf.float32, [self.batch_size]+self.img_shape)
is_train = tf.placeholder(tf.bool)
conv1_feats = convolution(imgs, 7, 7, 64, 2, 2, 'conv1')
conv1_feats = batch_norm(conv1_feats, 'bn_conv1', is_train, bn, 'relu')
pool1_feats = max_pool(conv1_feats, 3, 3, 2, 2, 'pool1')
res2a_feats = self.basic_block(pool1_feats, 'res2a', 'bn2a', is_train, bn, 64, 1)
res2b_feats = self.basic_block2(res2a_feats, 'res2b', 'bn2b', is_train, bn, 64)
res2c_feats = self.basic_block2(res2b_feats, 'res2c', 'bn2c', is_train, bn, 64)
res3a_feats = self.basic_block(res2c_feats, 'res3a', 'bn3a', is_train, bn, 128)
temp = res3a_feats
for i in range(1, 8):
temp = self.basic_block2(temp, 'res3b'+str(i), 'bn3b'+str(i), is_train, bn, 128)
res3b7_feats = temp
res4a_feats = self.basic_block(res3b7_feats, 'res4a', 'bn4a', is_train, bn, 256)
temp = res4a_feats
for i in range(1, 36):
temp = self.basic_block2(temp, 'res4b'+str(i), 'bn4b'+str(i), is_train, bn, 256)
res4b35_feats = temp
res5a_feats = self.basic_block(res4b35_feats, 'res5a', 'bn5a', is_train, bn, 512)
res5b_feats = self.basic_block2(res5a_feats, 'res5b', 'bn5b', is_train, bn, 512)
res5c_feats = self.basic_block2(res5b_feats, 'res5c', 'bn5c', is_train, bn, 512)
self.conv_feats = res5c_feats
self.conv_feat_shape = [20, 20, 2048]
self.roi_warped_feat_shape = [10, 10, 2048]
self.roi_pooled_feat_shape = [5, 5, 2048]
self.imgs = imgs
self.is_train = is_train
print("Basic ResNet152 net built.")
def build_anchors(self):
""" Build the anchors and their parents which include the surrounding contexts. """
print("Building the anchors...")
img_shape = np.array(self.img_shape[:2], np.int32)
# Build small anchors
current_feat_shape = np.array(self.conv_feat_shape[:2], np.int32)
for i in range(3):
for j in range(3):
num_anchor, anchors, anchor_is_untruncated, num_untruncated_anchor, parent_anchors, parent_anchor_is_untruncated, num_untruncated_parent_anchor = generate_anchors(img_shape, current_feat_shape, self.anchor_scales[i], self.anchor_ratios[j])
if i==0 and j==0:
self.num_anchor = num_anchor
self.anchors = anchors
self.anchor_is_untruncated = anchor_is_untruncated
self.num_untruncated_anchor = num_untruncated_anchor
self.parent_anchors = parent_anchors
self.parent_anchor_is_untruncated = parent_anchor_is_untruncated
self.num_untruncated_parent_anchor = num_untruncated_parent_anchor
else:
self.num_anchor = np.concatenate((self.num_anchor, num_anchor))
self.anchors = np.concatenate((self.anchors, anchors))
self.anchor_is_untruncated = np.concatenate((self.anchor_is_untruncated, anchor_is_untruncated))
self.num_untruncated_anchor = np.concatenate((self.num_untruncated_anchor, num_untruncated_anchor))
self.parent_anchors = np.concatenate((self.parent_anchors, parent_anchors))
self.parent_anchor_is_untruncated = np.concatenate((self.parent_anchor_is_untruncated, parent_anchor_is_untruncated))
self.num_untruncated_parent_anchor = np.concatenate((self.num_untruncated_parent_anchor, num_untruncated_parent_anchor))
# Build large anchors
current_feat_shape = (current_feat_shape/2).astype(np.int32)
for i in range(3, 6):
for j in range(3):
num_anchor, anchors, anchor_is_untruncated, num_untruncated_anchor, parent_anchors, parent_anchor_is_untruncated, num_untruncated_parent_anchor = generate_anchors(img_shape, current_feat_shape, self.anchor_scales[i], self.anchor_ratios[j])
self.num_anchor = np.concatenate((self.num_anchor, num_anchor))
self.anchors = np.concatenate((self.anchors, anchors))
self.anchor_is_untruncated = np.concatenate((self.anchor_is_untruncated, anchor_is_untruncated))
self.num_untruncated_anchor = np.concatenate((self.num_untruncated_anchor, num_untruncated_anchor))
self.parent_anchors = np.concatenate((self.parent_anchors, parent_anchors))
self.parent_anchor_is_untruncated = np.concatenate((self.parent_anchor_is_untruncated, parent_anchor_is_untruncated))
self.num_untruncated_parent_anchor = np.concatenate((self.num_untruncated_parent_anchor, num_untruncated_parent_anchor))
self.total_num_anchor = np.sum(self.num_anchor)
self.total_num_untruncated_anchor = np.sum(self.num_untruncated_anchor)
self.total_num_truncated_anchor = self.total_num_anchor - self.total_num_untruncated_anchor
# Show the statistics of anchors
for i in range(self.num_anchor_type):
print("Anchor type [%d, %d]: %d untruncated, %d truncated" %(self.anchor_shapes[i][0], self.anchor_shapes[i][1], self.num_untruncated_anchor[i], self.num_anchor[i]-self.num_untruncated_anchor[i]))
print("Anchors built.")
def build_rpn(self):
""" Build the RPN. """
print("Building the RPN...")
params = self.params
bn = self.batch_norm
is_train = self.is_train
feats = tf.placeholder(tf.float32, [self.batch_size]+self.conv_feat_shape)
gt_anchor_labels = tf.placeholder(tf.int32, [self.batch_size, self.total_num_anchor])
gt_anchor_regs = tf.placeholder(tf.float32, [self.batch_size, self.total_num_anchor, 4])
anchor_masks = tf.placeholder(tf.float32, [self.batch_size, self.total_num_anchor])
anchor_weights = tf.placeholder(tf.float32, [self.batch_size, self.total_num_anchor])
anchor_reg_masks = tf.placeholder(tf.float32, [self.batch_size, self.total_num_anchor])
self.feats = feats
self.gt_anchor_labels = gt_anchor_labels
self.gt_anchor_regs = gt_anchor_regs
self.anchor_masks = anchor_masks
self.anchor_weights = anchor_weights
self.anchor_reg_masks = anchor_reg_masks
# Compute the RoI proposals
all_rpn_logits = []
all_rpn_regs = []
current_feats = feats
if self.basic_model == 'vgg16':
kernel_sizes = [10, 10]
else:
kernel_sizes = [5, 5]
for i in range(2):
label_i = '_'+str(i)
rpn1 = convolution(current_feats, kernel_sizes[0], kernel_sizes[1], 512, 1, 1, 'rpn1'+label_i, group_id=1)
rpn1 = nonlinear(rpn1, 'relu')
rpn1 = dropout(rpn1, 0.5, is_train)
for j in range(9):
label_ij = str(i)+'_'+str(j)
rpn_logits = convolution(rpn1, 1, 1, 2, 1, 1, 'rpn_logits'+label_ij, group_id=1)
rpn_logits = tf.reshape(rpn_logits, [self.batch_size, -1, 2])
all_rpn_logits.append(rpn_logits)
rpn_regs = convolution(rpn1, 1, 1, 4, 1, 1, 'rpn_regs'+label_ij, group_id=1)
rpn_regs = tf.clip_by_value(rpn_regs, -0.2, 0.2)
rpn_regs = tf.reshape(rpn_regs, [self.batch_size, -1, 4])
all_rpn_regs.append(rpn_regs)
if i<1:
current_feats = max_pool(current_feats, 2, 2, 2, 2, 'rpn_pool'+label_i)
all_rpn_logits = tf.concat(1, all_rpn_logits)
all_rpn_regs = tf.concat(1, all_rpn_regs)
all_rpn_logits = tf.reshape(all_rpn_logits, [-1, 2])
all_rpn_regs = tf.reshape(all_rpn_regs, [-1, 4])
# Compute the loss function
gt_anchor_labels = tf.reshape(gt_anchor_labels, [-1])
gt_anchor_regs = tf.reshape(gt_anchor_regs, [-1, 4])
anchor_masks = tf.reshape(anchor_masks, [-1])
anchor_weights = tf.reshape(anchor_weights, [-1])
anchor_reg_masks = tf.reshape(anchor_reg_masks, [-1])
loss0 = tf.nn.sparse_softmax_cross_entropy_with_logits(all_rpn_logits, gt_anchor_labels) * anchor_masks
loss0 = tf.reduce_sum(loss0 * anchor_weights) / tf.reduce_sum(anchor_weights)
w = self.l2_loss(all_rpn_regs, gt_anchor_regs) * anchor_reg_masks
z = tf.reduce_sum(anchor_reg_masks)
loss0 = tf.cond(tf.less(0.0, z), lambda: loss0 + params.rpn_reg_weight * tf.reduce_sum(w) / z, lambda: loss0)
loss1 = params.weight_decay * tf.add_n(tf.get_collection('l2_1'))
loss = loss0 + loss1
# Build the optimizer
if params.solver == 'adam':
solver = tf.train.AdamOptimizer(params.learning_rate)
elif params.solver == 'momentum':
solver = tf.train.MomentumOptimizer(params.learning_rate, params.momentum)
elif params.solver == 'rmsprop':
solver = tf.train.RMSPropOptimizer(params.learning_rate, params.decay, params.momentum)
else:
solver = tf.train.GradientDescentOptimizer(params.learning_rate)
opt_op = solver.minimize(loss, global_step=self.global_step)
rpn_probs = tf.nn.softmax(all_rpn_logits)
rpn_scores = tf.squeeze(tf.slice(rpn_probs, [0, 1], [-1, 1]))
rpn_scores = tf.reshape(rpn_scores, [self.batch_size, self.total_num_anchor])
rpn_regs = tf.reshape(all_rpn_regs, [self.batch_size, self.total_num_anchor, 4])
self.rpn_loss = loss
self.rpn_loss0 = loss0
self.rpn_loss1 = loss1
self.rpn_opt_op = opt_op
self.rpn_scores = rpn_scores
self.rpn_regs = rpn_regs
print("RPN built.")
def build_rcn(self):
""" Build the RCN. """
print("Building the RCN...")
params = self.params
num_roi = self.num_roi
is_train = self.is_train
bn = self.batch_norm
roi_warped_feats = tf.placeholder(tf.float32, [self.batch_size, num_roi]+self.roi_warped_feat_shape)
gt_roi_classes = tf.placeholder(tf.int32, [self.batch_size, num_roi])
gt_roi_regs = tf.placeholder(tf.float32, [self.batch_size, num_roi, 4])
roi_masks = tf.placeholder(tf.float32, [self.batch_size, num_roi])
roi_weights = tf.placeholder(tf.float32, [self.batch_size, num_roi])
roi_reg_masks = tf.placeholder(tf.float32, [self.batch_size, num_roi])
self.roi_warped_feats = roi_warped_feats
self.gt_roi_classes = gt_roi_classes
self.gt_roi_regs = gt_roi_regs
self.roi_masks = roi_masks
self.roi_weights = roi_weights
self.roi_reg_masks = roi_reg_masks
# Get the RoI pooled feats
roi_warped_feats = tf.reshape(roi_warped_feats, [self.batch_size*num_roi]+self.roi_warped_feat_shape)
roi_pooled_feats = max_pool(roi_warped_feats, 2, 2, 2, 2, 'roi_pool')
roi_pooled_feats = tf.reshape(roi_pooled_feats, [self.batch_size*num_roi, -1])
# Compute the RoI classification results
fc6_feats = fully_connected(roi_pooled_feats, 4096, 'rcn_fc6', group_id=2)
fc6_feats = nonlinear(fc6_feats, 'relu')
fc6_feats = dropout(fc6_feats, 0.5, is_train)
fc7_feats = fully_connected(fc6_feats, 4096, 'rcn_fc7', group_id=2)
fc7_feats = nonlinear(fc7_feats, 'relu')
fc7_feats = dropout(fc7_feats, 0.5, is_train)
logits = fully_connected(fc7_feats, self.num_class, 'rcn_logits', group_id=2)
gt_roi_classes = tf.reshape(gt_roi_classes, [-1])
gt_roi_regs = tf.reshape(gt_roi_regs, [-1, 4])
roi_masks = tf.reshape(roi_masks, [-1])
roi_weights = tf.reshape(roi_weights, [-1])
roi_reg_masks = tf.reshape(roi_reg_masks, [-1])
if self.bbox_per_class:
regs = fully_connected(fc7_feats, 4*self.num_class, 'rcn_reg', group_id=2)
regs = tf.clip_by_value(regs, -0.2, 0.2)
useful_regs = []
for i in range(self.batch_size*num_roi):
useful_regs.append(tf.squeeze(tf.slice(regs, [i, 4*gt_roi_classes[i]], [1, 4])))
useful_regs = tf.pack(useful_regs)
else:
regs = fully_connected(fc7_feats, 4, 'rcn_reg', group_id=2)
regs = tf.clip_by_value(regs, -0.2, 0.2)
useful_regs = regs
# Compute the loss function
loss0 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, gt_roi_classes) * roi_masks
loss0 = tf.reduce_sum(loss0 * roi_weights) / tf.reduce_sum(roi_weights)
w = self.l2_loss(useful_regs, gt_roi_regs) * roi_reg_masks
z = tf.reduce_sum(roi_reg_masks)
loss0 = tf.cond(tf.less(0.0, z), lambda: loss0 + params.rcn_reg_weight * tf.reduce_sum(w) / z, lambda: loss0)
loss1 = params.weight_decay * tf.add_n(tf.get_collection('l2_2'))
loss = loss0 + loss1
# Build the optimizer
if params.solver == 'adam':
solver = tf.train.AdamOptimizer(params.learning_rate)
elif params.solver == 'momentum':
solver = tf.train.MomentumOptimizer(params.learning_rate, params.momentum)
elif params.solver == 'rmsprop':
solver = tf.train.RMSPropOptimizer(params.learning_rate, params.decay, params.momentum)
else:
solver = tf.train.GradientDescentOptimizer(params.learning_rate)
opt_op = solver.minimize(loss, global_step=self.global_step)
probs = tf.nn.softmax(logits)
classes = tf.argmax(probs, 1)
scores = tf.reduce_max(probs, 1)
scores = scores * roi_masks
res_classes = tf.reshape(classes, [self.batch_size, num_roi])
res_scores = tf.reshape(scores, [self.batch_size, num_roi])
if self.bbox_per_class:
res_regs = []
for i in range(self.batch_size*num_roi):
res_regs.append(tf.squeeze(tf.slice(regs, [i, 4*classes[i]], [1, 4])))
res_regs = tf.pack(res_regs)
else:
res_regs = regs
res_regs = tf.reshape(res_regs, [self.batch_size, num_roi, 4])
self.rcn_loss = loss
self.rcn_loss0 = loss0
self.rcn_loss1 = loss1
self.rcn_opt_op = opt_op
self.res_classes = res_classes
self.res_scores = res_scores
self.res_regs = res_regs
print("RCN built.")
def build_final(self):
""" Build the global loss function and its optimizer. """
params = self.params
# Compute the global loss function
loss0 = params.rpn_weight * self.rpn_loss0 + params.rcn_weight * self.rcn_loss0
loss1 = params.weight_decay * (tf.add_n(tf.get_collection('l2_1')) + tf.add_n(tf.get_collection('l2_2')))
loss = loss0 + loss1
# Build the optimizer
if params.solver == 'adam':
solver = tf.train.AdamOptimizer(params.learning_rate)
elif params.solver == 'momentum':
solver = tf.train.MomentumOptimizer(params.learning_rate, params.momentum)
elif params.solver == 'rmsprop':
solver = tf.train.RMSPropOptimizer(params.learning_rate, params.decay, params.momentum)
else:
solver = tf.train.GradientDescentOptimizer(params.learning_rate)
opt_op = solver.minimize(loss, global_step=self.global_step)
self.loss = loss
self.loss0 = loss0
self.loss1 = loss1
self.opt_op = opt_op
def l2_loss(self, s, t):
""" L2 loss function. """
d = s - t
x = d * d
loss = tf.reduce_sum(x, 1)
return loss
def smooth_l1_loss(self, s, t):
""" Smooth L1 loss function. """
d = s - t
x = 0.5 * d * d
y = tf.nn.relu(d-1) + tf.nn.relu(-d-1)
y = 0.5 * y * y
z = x - y
loss = tf.reduce_sum(z, 1)
return loss
def get_roi_feats(self, feats, rois):
""" Get the RoI warped feats for a batch. """
roi_warped_feats = []
for i in range(self.batch_size):
current_feats = feats[i]
current_rois = rois[i]
roi_warped_feats.append(self.roi_warp(current_feats, current_rois))
roi_warped_feats = np.array(roi_warped_feats)
return roi_warped_feats
def roi_warp(self, feats, rois):
""" Apply the RoI warping layer. """
ch, cw, c = self.conv_feat_shape
th, tw, c = self.roi_warped_feat_shape
num_roi = self.num_roi
warped_feats = []
for k in range(num_roi):
y, x, h, w = rois[k, 0], rois[k, 1], rois[k, 2], rois[k, 3]
j = np.array(list(range(h)), np.float32)
i = np.array(list(range(w)), np.float32)
tj = np.array(list(range(th)), np.float32)
ti = np.array(list(range(tw)), np.float32)
j = np.expand_dims(np.expand_dims(np.expand_dims(j, 1), 2), 3)
i = np.expand_dims(np.expand_dims(np.expand_dims(i, 0), 2), 3)
tj = np.expand_dims(np.expand_dims(np.expand_dims(tj, 1), 0), 1)
ti = np.expand_dims(np.expand_dims(np.expand_dims(ti, 0), 0), 1)
j = np.tile(j, (1, w, th, tw))
i = np.tile(i, (h, 1, th, tw))
tj = np.tile(tj, (h, w, 1, tw))
ti = np.tile(ti, (h, w, th, 1))
b = tj * h * 1.0 / th - j
a = ti * w * 1.0 / tw - i
b = np.maximum(np.zeros_like(b), 1 - np.absolute(b))
a = np.maximum(np.zeros_like(a), 1 - np.absolute(a))
G = b * a
G = G.reshape((h*w, th*tw))
sliced_feat = feats[y:y+h, x:x+w, :]
sliced_feat = sliced_feat.swapaxes(0, 1)
sliced_feat = sliced_feat.swapaxes(0, 2)
sliced_feat = sliced_feat.reshape((-1, h*w))
warped_feat = np.matmul(sliced_feat, G)
warped_feat = warped_feat.reshape((-1, th, tw))
warped_feat = warped_feat.swapaxes(0, 1)
warped_feat = warped_feat.swapaxes(1, 2)
warped_feats.append(warped_feat)
warped_feats = np.array(warped_feats)
return warped_feats
def get_feed_dict_for_rpn(self, batch, is_train, feats):
""" Get the feed dictionary for RPN. """
# Training phase
if is_train:
_, anchor_files = batch
gt_anchor_labels, gt_anchor_regs, anchor_masks, anchor_weights, anchor_reg_masks = self.process_anchor_data(anchor_files)
return {self.feats: feats, self.gt_anchor_labels: gt_anchor_labels, self.gt_anchor_regs: gt_anchor_regs, self.anchor_masks: anchor_masks, self.anchor_weights: anchor_weights, self.anchor_reg_masks: anchor_reg_masks, self.is_train: is_train}
# Validation or testing phase
else:
return {self.feats: feats, self.is_train: is_train}
def get_feed_dict_for_rcn(self, batch, is_train, feats, rois=None, masks=None):
""" Get the feed dictionary for RCN. """
# Training phase
if is_train:
_, anchor_files = batch
rois, gt_roi_classes, gt_roi_regs, roi_masks, roi_weights, roi_reg_masks = self.process_roi_data(anchor_files)
rois = rois.reshape((-1, 4))
rois = convert_bbox(rois, self.img_shape[:2], self.conv_feat_shape[:2])
rois = rois.reshape((self.batch_size, self.num_roi, 4))
roi_warped_feats = self.get_roi_feats(feats, rois)
return {self.roi_warped_feats: roi_warped_feats, self.gt_roi_classes: gt_roi_classes, self.gt_roi_regs: gt_roi_regs, self.roi_masks: roi_masks, self.roi_weights: roi_weights, self.roi_reg_masks: roi_reg_masks, self.is_train: is_train}
# Validation or testing phase
else:
rois = rois.reshape((-1, 4))
rois = convert_bbox(rois, self.img_shape[:2], self.conv_feat_shape[:2])
rois = rois.reshape((self.batch_size, self.num_roi, 4))
roi_warped_feats = self.get_roi_feats(feats, rois)
return {self.roi_warped_feats: roi_warped_feats, self.roi_masks: masks, self.is_train: is_train}
def get_feed_dict_for_all(self, batch, is_train, feats=None):
""" Get the feed dictionary for both RPN and RCN. """
# Training phase
if is_train:
_, anchor_files = batch
gt_anchor_labels, gt_anchor_regs, anchor_masks, anchor_weights, anchor_reg_masks = self.process_anchor_data(anchor_files)
rois, gt_roi_classes, gt_roi_regs, roi_masks, roi_weights, roi_reg_masks = self.process_roi_data(anchor_files)
rois = rois.reshape((-1, 4))
rois = convert_bbox(rois, self.img_shape[:2], self.conv_feat_shape[:2])
rois = rois.reshape((self.batch_size, self.num_roi, 4))
roi_warped_feats = self.get_roi_feats(feats, rois)
return {self.feats: feats, self.gt_anchor_labels: gt_anchor_labels, self.gt_anchor_regs: gt_anchor_regs, self.anchor_masks: anchor_masks, self.anchor_weights: anchor_weights, self.anchor_reg_masks: anchor_reg_masks, self.roi_warped_feats: roi_warped_feats, self.gt_roi_classes: gt_roi_classes, self.gt_roi_regs: gt_roi_regs, self.roi_masks: roi_masks, self.roi_weights: roi_weights, self.roi_reg_masks: roi_reg_masks, self.is_train: is_train}
# Validation or testing phase (not used at this moment)
else:
img_files = batch
imgs = self.img_loader.load_imgs(img_files)
return {self.imgs: imgs, self.is_train: is_train}
def process_anchor_data(self, anchor_files):
""" Prepare the anchor data for training RPN. """
gt_anchor_labels = []
gt_anchor_regs = []
anchor_masks = []
anchor_weights = []
anchor_reg_masks = []
t = self.num_anchor_type
for i in range(self.batch_size):
anchor_data = np.load(anchor_files[i])
labels = anchor_data['labels']
regs = anchor_data['regs']
ious = anchor_data['ious']
ioas = anchor_data['ioas']
iogs = anchor_data['iogs']
start = 0
masks = np.array([])
weights = np.array([])
reg_masks = np.array([])
for j in range(t):
end = start + self.num_anchor[j]
current_labels = labels[start:end]
current_ious = ious[start:end]
current_ioas = ioas[start:end]
current_iogs = iogs[start:end]
flags = self.anchor_is_untruncated[start:end]
idx1 = np.array(np.floor((current_ious-0.01)/0.2)+1, np.int32)
max_ioa_iogs = np.maximum(current_ioas, current_iogs)
idx2 = np.array(np.floor((max_ioa_iogs-0.01)/0.2)+1, np.int32)
current_masks = np.zeros((self.num_anchor[j]), np.float32)
current_weights = np.zeros((self.num_anchor[j]), np.float32)
current_reg_masks = np.zeros((self.num_anchor[j]), np.float32)
for k in range(self.num_anchor[j]):
current_masks[k] = flags[k]
current_weights[k] = flags[k] * self.anchor_iou_weight[j, idx1[k], idx2[k]]
current_reg_masks[k] = flags[k] * self.anchor_iou_weight[j, idx1[k], idx2[k]] * (current_labels[k]==1)
masks = np.concatenate((masks, current_masks))
weights = np.concatenate((weights, current_weights))
reg_masks = np.concatenate((reg_masks, current_reg_masks))
start = end
labels[np.where(labels==-1)[0]] = 0
gt_anchor_labels.append(labels)
gt_anchor_regs.append(regs)
anchor_masks.append(masks)
anchor_weights.append(weights)
anchor_reg_masks.append(reg_masks)
gt_anchor_labels = np.array(gt_anchor_labels)
gt_anchor_regs = np.array(gt_anchor_regs)
anchor_masks = np.array(anchor_masks)
anchor_weights = np.array(anchor_weights)
anchor_reg_masks = np.array(anchor_reg_masks)
return gt_anchor_labels, gt_anchor_regs, anchor_masks, anchor_weights, anchor_reg_masks
def process_roi_data(self, anchor_files):
""" Prepare the RoI data for training RCN. """
num_roi = self.num_roi
rois = []
gt_roi_classes = []
gt_roi_regs = []
roi_masks = []
roi_weights = []
roi_reg_masks = []
X = self.num_object
Y = self.num_background
for i in range(self.batch_size):
anchor_data = np.load(anchor_files[i])
labels = anchor_data['labels']
regs = anchor_data['regs']
classes = anchor_data['classes']
ious = anchor_data['ious']
ioas = anchor_data['ioas']
iogs = anchor_data['iogs']
sorted_idx = anchor_data['sorted_idx']
A = len(np.where(labels==1)[0])
B = len(np.where(labels==0)[0])
C = self.total_num_truncated_anchor
U = min(X, A)
V = min(Y, B)
if U>0:
p = int(A*1.0/U)
f = int(np.random.uniform(0, 1) * p)
obj_idx = np.array(list(range(f, A, p)), np.int32)
else:
obj_idx = np.array([], np.int32)
if V>0:
q = int(B*1.0/V)
g = int(np.random.uniform(0, 1) * q)
bg_idx = -np.array(list(range(g+C+1, B+C+1, q)), np.int32)
else:
bg_idx = np.array([], np.int32)
chosen_idx = np.concatenate((obj_idx, bg_idx))
chosen_idx = sorted_idx[chosen_idx]
num_real_roi = len(chosen_idx)
real_rois = self.parent_anchors[chosen_idx]
real_roi_regs = regs[chosen_idx]
real_roi_classes = classes[chosen_idx]
real_roi_ious = ious[chosen_idx]
real_roi_ioas = ioas[chosen_idx]
real_roi_iogs = iogs[chosen_idx]
idx1 = np.array(np.floor((real_roi_ious-0.01)/0.2)+1, np.int32)
max_ioa_iogs = np.maximum(real_roi_ioas, real_roi_iogs)
idx2 = np.array(np.floor((max_ioa_iogs-0.01)/0.2)+1, np.int32)
real_roi_masks = np.ones((num_real_roi), np.float32)
real_roi_weights = np.zeros((num_real_roi), np.float32)
real_roi_reg_masks = np.zeros((num_real_roi), np.float32)
for k in range(num_real_roi):
real_roi_weights[k] = self.class_iou_weight[real_roi_classes[k], idx1[k], idx2[k]]
real_roi_reg_masks[k] = self.class_iou_weight[real_roi_classes[k], idx1[k], idx2[k]] * (real_roi_classes[k]!=self.background_id)
current_rois = np.ones((num_roi, 4), np.int32) * 3
current_rois[:num_real_roi] = real_rois
current_roi_classes = np.ones((num_roi), np.int32)
current_roi_classes[:num_real_roi] = real_roi_classes
current_roi_regs = np.ones((num_roi, 4), np.float32)
current_roi_regs[:num_real_roi] = real_roi_regs
current_roi_masks = np.zeros((num_roi), np.float32)
current_roi_masks[:num_real_roi] = real_roi_masks
current_roi_weights = np.zeros((num_roi), np.float32)
current_roi_weights[:num_real_roi] = real_roi_weights
current_roi_reg_masks = np.zeros((num_roi), np.float32)
current_roi_reg_masks[:num_real_roi] = real_roi_reg_masks
rois.append(current_rois)
gt_roi_classes.append(current_roi_classes)
gt_roi_regs.append(current_roi_regs)
roi_masks.append(current_roi_masks)
roi_weights.append(current_roi_weights)
roi_reg_masks.append(current_roi_reg_masks)
rois = np.array(rois)
gt_roi_classes = np.array(gt_roi_classes)
gt_roi_regs = np.array(gt_roi_regs)
roi_masks = np.array(roi_masks)
roi_weights = np.array(roi_weights)
roi_reg_masks = np.array(roi_reg_masks)
return rois, gt_roi_classes, gt_roi_regs, roi_masks, roi_weights, roi_reg_masks
def prepare_anchor_data(self, dataset, show_data=False):
""" Prepare useful anchor data for training. """
print("Labeling the anchors...")
t = self.num_anchor_type
r = self.num_class
anchor_iou_freq = np.zeros((t, 6, 6), np.float32)
class_iou_freq = np.zeros((r, 6, 6), np.float32)
for i in tqdm(list(range(dataset.count))):
img_file = dataset.img_files[i]
H, W = dataset.img_heights[i], dataset.img_widths[i]
gt_classes = np.array(dataset.gt_classes[i])
gt_bboxes = np.array(dataset.gt_bboxes[i])
gt_bboxes = convert_bbox(gt_bboxes, [H, W], self.img_shape[:2])
# Label the anchors and find their closest ground truth bounding boxes
labels, bboxes, classes, ious, ioas, iogs = label_anchors(self.anchors, self.anchor_is_untruncated, gt_classes, gt_bboxes, self.background_id)
start = 0
for j in range(t):
end = start + self.num_anchor[j]
current_labels = labels[start:end]
current_classes = classes[start:end]
current_ious = ious[start:end]
current_ioas = ioas[start:end]
current_iogs = iogs[start:end]
flags = self.anchor_is_untruncated[start:end]
idx1 = np.array(np.floor((current_ious-0.01)/0.2)+1, np.int32)
max_ioa_iogs = np.maximum(current_ioas, current_iogs)
idx2 = np.array(np.floor((max_ioa_iogs-0.01)/0.2)+1, np.int32)
for k in range(self.num_anchor[j]):
anchor_iou_freq[j, idx1[k], idx2[k]] += flags[k]
class_iou_freq[current_classes[k], idx1[k], idx2[k]] += flags[k]
start = end
sorted_idx = np.argsort(ious)[::-1]
num_hit = len(np.where(labels==1)[0])
regs = param_bbox(bboxes, self.anchors)
np.savez(dataset.anchor_files[i], labels=labels, bboxes=bboxes, regs=regs, classes=classes, ious=ious, ioas=ioas, iogs=iogs, sorted_idx=sorted_idx)
# Show the positive anchors if required
if show_data:
img = cv2.imread(img_file)
targets = convert_bbox(bboxes, self.img_shape[:2], [H, W])
scaled_anchors = convert_bbox(self.anchors, self.img_shape[:2], [H, W])
for k in range(self.total_num_anchor):
y, x, h, w = targets[k]
cv2.rectangle(img, (x, y), (x+w-1, y+h-1), (255, 0, 0), 2)
if labels[k]==1:
cv2.rectangle(img, (scaled_anchors[k][1], scaled_anchors[k][0]), (scaled_anchors[k][1]+scaled_anchors[k][3]-1, scaled_anchors[k][0]+scaled_anchors[k][2]-1), (255, 255, 255), 2)
winname = '%d Hits' %(num_hit)
cv2.imshow(winname, img)
cv2.moveWindow(winname, 100, 100)
cv2.waitKey(1000)
cv2.destroyAllWindows()
# Save the statistics
self.anchor_iou_freq = (anchor_iou_freq + 0.001) / dataset.count
self.class_iou_freq = (class_iou_freq + 0.001) / dataset.count
np.savez(self.anchor_stat_file, anchor_iou_freq=self.anchor_iou_freq, class_iou_freq=self.class_iou_freq)
def process_rpn_result(self, probs, rois):
""" Process the RPN result. """
probs = probs[np.where(self.anchor_is_untruncated==1)[0]]
rois = rois[np.where(self.anchor_is_untruncated==1)[0]]
num_roi, _, top_k_rois = nms(probs, rois, self.num_roi)
return num_roi, np.array(top_k_rois)
def process_rcn_result(self, probs, classes, bboxes, H, W):
""" Process the RCN result. """
valid_idx = np.where(classes!=self.background_id)[0]
det_probs = probs[valid_idx]
det_classes = classes[valid_idx]
det_bboxes = bboxes[valid_idx]
if len(valid_idx)==0:
return 0, np.array([]), np.array([]), np.array([])
num_det, top_k_scores, top_k_classes, top_k_bboxes = postprocess(det_probs, det_classes, det_bboxes)
top_k_bboxes = convert_bbox(top_k_bboxes, self.img_shape[:2], [H, W])
return num_det, np.array(top_k_scores), np.array(top_k_classes), np.array(top_k_bboxes)