-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdataset.py
365 lines (279 loc) · 16.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import numpy as np
import tensorflow as tf
import cv2
import xml.etree.ElementTree as ET
from tqdm import tqdm
from utils.coco.coco import *
coco_num_class = 81
coco_class_names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush', 80: 'background'}
coco_class_colors = [[225, 239, 163], [202, 196, 172], [252, 182, 134], [170, 148, 215], [216, 243, 246], [229, 150, 89], [223, 226, 140], [154, 159, 166], [ 89, 146, 182], [199, 250, 161], [113, 233, 109], [135, 232, 89], [138, 216, 217], [ 87, 205, 191], [201, 106, 135], [158, 198, 159], [169, 147, 118], [187, 85, 107], [156, 97, 93], [176, 93, 108], [214, 190, 200], [212, 173, 198], [195, 188, 100], [162, 189, 192], [250, 122, 240], [122, 249, 106], [ 96, 110, 87], [230, 177, 203], [250, 201, 81], [195, 220, 198], [ 82, 143, 88], [ 96, 95, 105], [243, 153, 221], [153, 127, 81], [143, 211, 223], [188, 96, 250], [236, 233, 151], [185, 131, 198], [202, 232, 165], [188, 101, 213], [175, 184, 238], [223, 218, 245], [136, 210, 213], [156, 248, 85], [ 93, 221, 116], [200, 253, 91], [130, 210, 103], [210, 102, 212], [180, 178, 197], [160, 115, 138], [186, 229, 120], [184, 107, 86], [117, 229, 229], [186, 96, 139], [183, 215, 253], [106, 86, 154], [159, 184, 236], [217, 217, 194], [171, 108, 147], [ 94, 118, 231], [144, 242, 113], [183, 149, 230], [ 82, 98, 113], [166, 214, 170], [234, 128, 112], [166, 118, 178], [206, 138, 163], [239, 233, 178], [127, 238, 193], [180, 107, 208], [233, 230, 203], [ 92, 177, 113], [167, 209, 190], [245, 233, 109], [159, 92, 246], [208, 235, 166], [240, 91, 230], [118, 192, 103], [216, 102, 147], [170, 162, 200], [206, 252, 204]]
coco_class_to_category = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90, 80: 100}
coco_category_to_class = {1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7, 9: 8, 10: 9, 11: 10, 13: 11, 14: 12, 15: 13, 16: 14, 17: 15, 18: 16, 19: 17, 20: 18, 21: 19, 22: 20, 23: 21, 24: 22, 25: 23, 27: 24, 28: 25, 31: 26, 32: 27, 33: 28, 34: 29, 35: 30, 36: 31, 37: 32, 38: 33, 39: 34, 40: 35, 41: 36, 42: 37, 43: 38, 44: 39, 46: 40, 47: 41, 48: 42, 49: 43, 50: 44, 51: 45, 52: 46, 53: 47, 54: 48, 55: 49, 56: 50, 57: 51, 58: 52, 59: 53, 60: 54, 61: 55, 62: 56, 63: 57, 64: 58, 65: 59, 67: 60, 70: 61, 72: 62, 73: 63, 74: 64, 75: 65, 76: 66, 77: 67, 78: 68, 79: 69, 80: 70, 81: 71, 82: 72, 84: 73, 85: 74, 86: 75, 87: 76, 88: 77, 89: 78, 90: 79, 100: 80}
pascal_num_class = 21
pascal_class_names = {0: 'person', 1: 'bird', 2: 'cat', 3: 'cow', 4: 'dog', 5: 'horse', 6: 'sheep', 7: 'aeroplane', 8: 'bicycle', 9: 'boat', 10: 'bus', 11: 'car', 12: 'motorbike', 13: 'train', 14: 'bottle', 15: 'chair', 16: 'diningtable', 17: 'pottedplant', 18: 'sofa', 19: 'tvmonitor', 20: 'background'}
pascal_class_ids = {'person': 0, 'bird': 1, 'cat': 2, 'cow': 3, 'dog': 4, 'horse': 5, 'sheep': 6, 'aeroplane': 7, 'bicycle': 8, 'boat': 9, 'bus': 10, 'car': 11, 'motorbike': 12, 'train': 13, 'bottle': 14, 'chair': 15, 'diningtable': 16, 'pottedplant': 17, 'sofa': 18, 'tvmonitor': 19, 'background': 20}
pascal_class_colors = [[174, 220, 192], [116, 108, 127], [118, 144, 153], [189, 149, 122], [191, 93, 101], [154, 190, 115], [216, 148, 110], [230, 141, 249], [191, 217, 206], [156, 111, 135], [138, 147, 168], [138, 241, 227], [171, 113, 234], [139, 208, 147], [123, 205, 243], [145, 116, 119], [206, 204, 195], [157, 174, 227], [194, 205, 238], [183, 184, 164], [152, 248, 224]]
class DataSet():
def __init__(self, img_ids, img_files, img_heights, img_widths, batch_size=1, anchor_files=None, gt_classes=None, gt_bboxes=None, is_train=False, shuffle=False):
self.img_ids = np.array(img_ids)
self.img_files = np.array(img_files)
self.img_heights = np.array(img_heights)
self.img_widths = np.array(img_widths)
self.anchor_files = np.array(anchor_files)
self.batch_size = batch_size
self.gt_classes = gt_classes
self.gt_bboxes = gt_bboxes
self.is_train = is_train
self.shuffle = shuffle
self.setup()
def setup(self):
""" Setup the dataset. """
self.current_index = 0
self.count = len(self.img_files)
self.indices = list(range(self.count))
self.num_batches = int(self.count/self.batch_size)
self.reset()
def reset(self):
""" Reset the dataset. """
self.current_index = 0
if self.shuffle:
np.random.shuffle(self.indices)
def next_batch(self):
""" Fetch the next batch. """
assert self.has_next_batch()
start, end = self.current_index, self.current_index + self.batch_size
current_indices = self.indices[start:end]
img_files = self.img_files[current_indices]
if self.is_train:
anchor_files = self.anchor_files[current_indices]
self.current_index += self.batch_size
return img_files, anchor_files
else:
self.current_index += self.batch_size
return img_files
def has_next_batch(self):
""" Determine whether there is any batch left. """
return self.current_index + self.batch_size <= self.count
def prepare_train_coco_data(args):
""" Prepare relevant COCO data for training the model. """
image_dir, annotation_file, data_dir = args.train_coco_image_dir, args.train_coco_annotation_file, args.train_coco_data_dir
batch_size = args.batch_size
basic_model = args.basic_model
num_roi = args.num_roi
coco = COCO(annotation_file)
img_ids = list(coco.imgToAnns.keys())
img_files = []
img_heights = []
img_widths = []
anchor_files = []
gt_classes = []
gt_bboxes = []
for img_id in img_ids:
img_files.append(os.path.join(image_dir, coco.imgs[img_id]['file_name']))
img_heights.append(coco.imgs[img_id]['height'])
img_widths.append(coco.imgs[img_id]['width'])
anchor_files.append(os.path.join(data_dir, os.path.splitext(coco.imgs[img_id]['file_name'])[0]+'_'+basic_model+'_anchor.npz'))
classes = []
bboxes = []
for ann in coco.imgToAnns[img_id]:
classes.append(coco_category_to_class[ann['category_id']])
bboxes.append([ann['bbox'][1], ann['bbox'][0], ann['bbox'][3]+1, ann['bbox'][2]+1])
gt_classes.append(classes)
gt_bboxes.append(bboxes)
print("Building the training dataset...")
dataset = DataSet(img_ids, img_files, img_heights, img_widths, batch_size, anchor_files, gt_classes, gt_bboxes, True, True)
print("Dataset built.")
return coco, dataset
def prepare_train_pascal_data(args):
""" Prepare relevant PASCAL data for training the model. """
image_dir, annotation_dir, data_dir = args.train_pascal_image_dir, args.train_pascal_annotation_dir, args.train_pascal_data_dir
batch_size = args.batch_size
basic_model = args.basic_model
num_roi = args.num_roi
files = os.listdir(annotation_dir)
img_ids = list(range(len(files)))
img_files = []
img_heights = []
img_widths = []
anchor_files = []
gt_classes = []
gt_bboxes = []
for f in files:
annotation = os.path.join(annotation_dir, f)
tree = ET.parse(annotation)
root = tree.getroot()
img_name = root.find('filename').text
img_file = os.path.join(image_dir, img_name)
img_files.append(img_file)
img_id_str = os.path.splitext(img_name)[0]
size = root.find('size')
img_height = int(size.find('height').text)
img_width = int(size.find('width').text)
img_heights.append(img_height)
img_widths.append(img_width)
anchor_files.append(os.path.join(data_dir, img_id_str+'_'+basic_model+'_anchor.npz'))
classes = []
bboxes = []
for obj in root.findall('object'):
class_name = obj.find('name').text
class_id = pascal_class_ids[class_name]
classes.append(class_id)
bndbox = obj.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
bboxes.append([ymin, xmin, ymax-ymin+1, xmax-xmin+1])
gt_classes.append(classes)
gt_bboxes.append(bboxes)
print("Building the training dataset...")
dataset = DataSet(img_ids, img_files, img_heights, img_widths, batch_size, anchor_files, gt_classes, gt_bboxes, True, True)
print("Dataset built.")
return dataset
def prepare_val_coco_data(args):
""" Prepare relevant COCO data for validating the model. """
image_dir, annotation_file = args.val_coco_image_dir, args.val_coco_annotation_file
coco = COCO(annotation_file)
img_ids = list(coco.imgToAnns.keys())
img_files = []
img_heights = []
img_widths = []
for img_id in img_ids:
img_files.append(os.path.join(image_dir, coco.imgs[img_id]['file_name']))
img_heights.append(coco.imgs[img_id]['height'])
img_widths.append(coco.imgs[img_id]['width'])
print("Building the validation dataset...")
dataset = DataSet(img_ids, img_files, img_heights, img_widths)
print("Dataset built.")
return coco, dataset
def prepare_val_pascal_data(args):
""" Prepare relevant PASCAL data for validating the model. """
image_dir, annotation_dir = args.val_pascal_image_dir, args.val_pascal_annotation_dir
files = os.listdir(annotation_dir)
img_ids = list(range(len(files)))
img_files = []
img_heights = []
img_widths = []
pascal = {}
for f in files:
annotation = os.path.join(annotation_dir, f)
tree = ET.parse(annotation)
root = tree.getroot()
img_name = root.find('filename').text
pascal[img_name] = []
img_file = os.path.join(image_dir, img_name)
img_files.append(img_file)
size = root.find('size')
img_height = int(size.find('height').text)
img_width = int(size.find('width').text)
img_heights.append(img_height)
img_widths.append(img_width)
for obj in root.findall('object'):
class_name = obj.find('name').text
class_id = pascal_class_ids[class_name]
temp = obj.find('difficult')
difficult = int(temp.text) if temp!=None else 0
bndbox = obj.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
pascal[img_name].append({'class_id': class_id, 'bbox':[xmin, ymin, xmax, ymax], 'difficult': difficult})
print("Building the validation dataset...")
dataset = DataSet(img_ids, img_files, img_heights, img_widths)
print("Dataset built.")
return pascal, dataset
def eval_pascal_one_class(pascal, detections, c):
""" Evaluate the detection result for one class on PASCAL dataset. """
gts = {}
num_objs = 0
for img_name in pascal:
gts[img_name] = []
for obj in pascal[img_name]:
if obj['class_id'] == c and obj['difficult']==0:
gts[img_name] += [{'bbox':obj['bbox'], 'detected': False}]
num_objs += 1
dts = []
scores = []
num_dets = 0
for img_name in detections:
for dt in detections[img_name]:
if dt['class_id'] == c:
dts.append([img_name, dt['bbox'], dt['score']])
scores.append(dt['score'])
num_dets += 1
# Sort the detections based on their scores
scores = np.array(scores, np.float32)
sorted_idx = np.argsort(scores)[::-1]
tp = np.zeros((num_dets))
fp = np.zeros((num_dets))
for i in tqdm(list(range(num_dets))):
idx = sorted_idx[i]
img_name = dts[idx][0]
bbox = dts[idx][1]
gt_bboxes = np.array([obj['bbox'] for obj in gts[img_name]], np.float32)
# Compute the max IoU of current detection with the ground truths
max_iou = 0.0
if gt_bboxes.size > 0:
ixmin = np.maximum(gt_bboxes[:, 0], bbox[0])
iymin = np.maximum(gt_bboxes[:, 1], bbox[1])
ixmax = np.minimum(gt_bboxes[:, 2], bbox[2])
iymax = np.minimum(gt_bboxes[:, 3], bbox[3])
iw = np.maximum(ixmax - ixmin + 1.0, 0.0)
ih = np.maximum(iymax - iymin + 1.0, 0.0)
area_intersect = iw * ih
area_union = (bbox[2] - bbox[0] + 1.0) * (bbox[3] - bbox[1] + 1.0) + (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1.0) * (gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1.0) - area_intersect
ious = area_intersect / area_union
max_iou = np.max(ious, axis=0)
j = np.argmax(ious)
# Determine if the current detection is a true or false positive
if max_iou > 0.5:
if not gts[img_name][j]['detected']:
tp[i] = 1.0
gts[img_name][j]['detected'] = True
else:
fp[i] = 1.0
else:
fp[i] = 1.0
# Accumulate the numbers of true and false positives
tp = np.cumsum(tp)
fp = np.cumsum(fp)
# Compute the average precision based on these data
rec = tp * 1.0 / num_objs
prec = tp * 1.0 / np.maximum((tp + fp), np.finfo(np.float64).eps)
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
print('average precision for class %s = %f' %(pascal_class_names[c], ap))
return ap
def eval_pascal(pascal, detections):
""" Evaluate the detection result on PASCAL dataset. """
ap = 0.0
for i in range(pascal_num_class-1):
ap += eval_pascal_one_class(pascal, detections, i)
ap = ap / (pascal_num_class-1)
print('mean average precision = %f' %ap)
return ap
def prepare_test_data(args):
""" Prepare relevant data for testing the model. """
image_dir = args.test_image_dir
files = os.listdir(image_dir)
files = [f for f in files if f.lower().endswith('.jpg')]
img_ids = list(range(len(files)))
img_files = []
img_heights = []
img_widths = []
for f in files:
img_path = os.path.join(image_dir, f)
img_files.append(img_path)
img = cv2.imread(img_path)
img_heights.append(img.shape[0])
img_widths.append(img.shape[1])
print("Building the testing dataset...")
dataset = DataSet(img_ids, img_files, img_heights, img_widths)
print("Dataset built.")
return dataset