-
Notifications
You must be signed in to change notification settings - Fork 16
/
varying.py
245 lines (195 loc) · 9.93 KB
/
varying.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# -*- coding: utf-8 -*-
import time
import copy
import numpy as np
np.set_printoptions(precision=6,threshold=1e3)
#import matplotlib
#matplotlib.use('Qt5Agg')
#import matplotlib.pyplot as plt
import argparse
import torch
#from torch import nn
#from Nets import MLP,CNNCifar,CNNMnist
import flow
import DC_DS
import MIMO
from optlib import Gibbs
import DC_RIS
def initial():
libopt = argparse.ArgumentParser()
libopt.add_argument('--M', type=int, default=40, help='total # of devices')
libopt.add_argument('--N', type=int, default=5, help='# of BS antennas')
libopt.add_argument('--L', type=int, default=40, help='RIS Size')
# optimization parameters
libopt.add_argument('--nit', type=int, default=100, help='I_max,# of maximum SCA loops')
libopt.add_argument('--Jmax', type=int, default=0, help='# of maximum Gibbs Outer loops')
libopt.add_argument('--threshold', type=float, default=1e-2, help='epsilon,SCA early stopping criteria')
libopt.add_argument('--tau', type=float, default=1, help=r'\tau, the SCA regularization term')
# simulation parameters
libopt.add_argument('--trial', type=int, default=1, help='# of Monte Carlo Trials')
libopt.add_argument('--SNR', type=float, default=90.0, help='noise variance/0.1W in dB')
libopt.add_argument('--verbose', type=int, default=2, help=r'whether output or not')
libopt.add_argument('--set', type=int, default=2, help=r'=1 if concentrated devices+ euqal dataset;\
=2 if two clusters + unequal dataset')
libopt.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')
# learning parameters
libopt.add_argument('--gpu', type=int, default=1, help=r'Use Which Gpu')
libopt.add_argument('--local_ep', type=int, default=1, help="the number of local epochs: E")
libopt.add_argument('--local_bs', type=int, default=0, help="0 for no effect,Local Bath size B")
libopt.add_argument('--lr', type=float, default=0.01, help="learning rate,lambda")
libopt.add_argument('--momentum', type=float, default=0.9, help="SGD momentum, used only for multiple local updates")
libopt.add_argument('--epochs', type=int, default=500, help="rounds of training,T")
args = libopt.parse_args()
return args
def channel_gen(libopt):
return
if __name__ == '__main__':
libopt = initial()
np.random.seed(libopt.seed)
print(libopt)
Noiseless=0
Proposed=0
NoDS=1
total_time_trial=5
libopt.total_time_trial=total_time_trial
filename='./store/vary_trial_{}_M_{}_N_{}_L_{}_SNR_{}_Tau_{}_seed_{}_onlyds.npz'.format(libopt.trial,
libopt.M,
libopt.N,libopt.L,
libopt.SNR,libopt.tau,libopt.seed)
print('save result to: \n {}'.format(filename))
libopt.alpha_direct=3.76; # User-BS Path loss exponent
fc=915*10**6 #carrier frequency, wavelength lambda=3.0*10**8/fc
BS_Gain=10**(5.0/10) #BS antenna gain
RIS_Gain=10**(5.0/10) #RIS antenna gain
User_Gain=10**(0.0/10) #User antenna gain
d_RIS=1.0/10 #dimension length of RIS element/wavelength
libopt.BS=np.array([-50,0,10])
libopt.RIS=np.array([0,0,10])
libopt.range=20;
x0=np.ones([libopt.M],dtype=int)
SCA_Gibbs=np.ones([libopt.Jmax+1,libopt.trial,total_time_trial])*np.nan
DC_NORIS_set=np.ones([libopt.trial,total_time_trial])*np.nan
DC_NODS_set=np.ones([libopt.trial,total_time_trial])*np.nan
Alt_Gibbs=np.ones([libopt.Jmax+1,libopt.trial,total_time_trial])*np.nan
DG_NORIS=np.ones([libopt.trial,total_time_trial])*np.nan
result_set=[]
result_CNN_set=[]
result_CNN_MB_set=[]
ref=(1e-10)**0.5
sigma_n=np.power(10,-libopt.SNR/10)
libopt.sigma=sigma_n/ref**2
libopt.device = torch.device('cuda:{}'.format(libopt.gpu) if torch.cuda.is_available() and libopt.gpu != -1 else 'cpu')
print(libopt.device)
kappa_direct=0 #direct channel Rician factor
kappa_PS=10**0.3 #RIS-PS channel Rician factor
kappa_User=0 #RIS-device channel Rician factor
azi_out=np.pi/2
ste_out=np.exp(-1j*np.pi*np.arange(libopt.N)*np.sin(azi_out))
for i in range(libopt.trial):
print('This is the {0}-th trial'.format(i))
libopt.K=np.random.randint(1000,high=2001,size=(int(libopt.M)))
lessuser_size=int(libopt.M/2)
libopt.K2=np.random.randint(100,high=201,size=(lessuser_size))
libopt.lessuser=np.random.choice(libopt.M,size=lessuser_size, replace=False)
libopt.K[libopt.lessuser]=libopt.K2
print('total number of data={}'.format(sum(libopt.K)))
libopt.dx2=np.random.rand(int(libopt.M-np.round(libopt.M/2)))*libopt.range+100
libopt.dx1=np.random.rand(int(np.round(libopt.M/2)))*libopt.range-libopt.range #[-range,0]
libopt.dx=np.concatenate((libopt.dx1,libopt.dx2))
libopt.dy=np.random.rand(libopt.M)*20-10
libopt.d_UR=((libopt.dx-libopt.RIS[0])**2+(libopt.dy-libopt.RIS[1])**2+libopt.RIS[2]**2
)**0.5
libopt.d_RB=np.linalg.norm(libopt.BS-libopt.RIS)
libopt.d_RIS=libopt.d_UR+libopt.d_RB
libopt.d_direct=((libopt.dx-libopt.BS[0])**2+(libopt.dy-libopt.BS[1])**2+libopt.BS[2]**2
)**0.5
libopt.PL_direct=BS_Gain*User_Gain*(3*10**8/fc/4/np.pi/libopt.d_direct)**libopt.alpha_direct
libopt.PL_RIS=BS_Gain*User_Gain*RIS_Gain*libopt.L**2*d_RIS**2/4/np.pi\
*(3*10**8/fc/4/np.pi/libopt.d_UR)**2*(3*10**8/fc/4/np.pi/libopt.d_RB)**2
#channels
azi_in=np.arctan((libopt.dx-libopt.RIS[0])/(libopt.dy-libopt.RIS[1]))
ste_in=np.exp(-1j*np.pi*np.arange(libopt.L)*np.sin(azi_in))
x=x0
dic={}
dic['x_store']=[]
dic['f_store']=[]
dic['h_store']=[]
# dic['x_store_NORIS']=[]
# dic['f_store_NORIS']=[]
dic['f_store_NODS']=[]
dic['h_store_NODS']=[]
# dic['f_SVD']=[]
H_RB_LOS=(kappa_PS/(1+kappa_PS))**0.5*np.outer(ste_out,ste_in.conj())
# generate different small-scale fading channels channels
for time_trial in range(total_time_trial):
print('this is the {}-th channel realization'.format(time_trial))
h_d=(np.random.randn(libopt.N,libopt.M)+
1j*np.random.randn(libopt.N,libopt.M))/2**0.5
h_d=h_d@np.diag(libopt.PL_direct**0.5)/ref
H_RB_NLOS=(1/(1+kappa_PS))**0.5*(np.random.randn(libopt.N,libopt.L)+1j*np.random.randn(libopt.N,libopt.L))/2**0.5
H_RB=H_RB_NLOS+H_RB_LOS
h_UR=(np.random.randn(libopt.L,libopt.M)+1j*np.random.randn(libopt.L,libopt.M))/2**0.5
h_UR=h_UR@np.diag(libopt.PL_RIS**0.5)/ref
G=np.zeros([libopt.N,libopt.L,libopt.M],dtype = complex)
for j in range(libopt.M):
G[:,:,j]=H_RB@np.diag(h_UR[:,j])
if Proposed:
start = time.time()
print('Running the proposed algorithm')
[x_store,obj_new,f_store,theta_store]=Gibbs(libopt,h_d,G,x,True,True)
end = time.time()
print("Running time: {} seconds".format(end - start))
SCA_Gibbs[:,i,time_trial]=obj_new
else:
obj_new=np.zeros([libopt.Jmax+1,])
x_store=np.zeros([libopt.Jmax+1,])
f_store=np.zeros([libopt.N,libopt.Jmax+1])
theta_store=0
if NoDS:
start = time.time()
print('Running DC algorithm for RIS optimiazation')
obj_DC_RIS,F_DC_RIS,theta_DC_RIS=DC_RIS.DC_RIS(libopt,h_d,G,libopt.verbose)
DC_NODS_set[i,time_trial]=obj_DC_RIS
end = time.time()
print("Running time: {} seconds".format(end - start))
else:
obj_DC_RIS=0
F_DC_RIS=np.zeros([libopt.N,1])
theta_DC_RIS=np.zeros([libopt.L,1])
print('Algorithm2:{:.6f} Algorithm1:{:.6f} NoDS:{:.6f}'.format(
obj_new[libopt.Jmax],
obj_new[0],obj_DC_RIS))
h1=copy.deepcopy(h_d)
h2=copy.deepcopy(h_d)
for imite in range(libopt.M):
if Proposed:
h1[:,imite]=h_d[:,imite]+G[:,:,imite]@theta_store[:,libopt.Jmax]
if NoDS:
h2[:,imite]=h_d[:,imite]+G[:,:,imite]@theta_DC_RIS
dic['x_store'].append(copy.deepcopy(x_store[libopt.Jmax]))
dic['f_store'].append(copy.deepcopy(f_store[:,libopt.Jmax]))
dic['h_store'].append(copy.deepcopy(h1))
dic['f_store_NODS'].append(copy.deepcopy(F_DC_RIS))
dic['h_store_NODS'].append(copy.deepcopy(h2))
libopt.transmitpower=0.1
start = time.time()
libopt.lr=0.01
libopt.epochs=500
libopt.local_bs=0
result,_=flow.learning_flow3(libopt,Noiseless,Proposed,NoDS,
dic)
end = time.time()
result_CNN_set.append(result)
print("Running time: {} seconds".format(end - start))
# start = time.time()
#
# libopt.lr=0.005
# libopt.epochs=100
# libopt.local_bs=128
# result,_=flow.learning_flow(libopt,Noiseless,Proposed,NoRIS,NoDS,SVD,
# h_d,G,dic)
# result_CNN_MB_set.append(result)
# end = time.time()
# print("Running time: {} seconds".format(end - start))
np.savez(filename,vars(libopt),result_CNN_set)
#