-
Notifications
You must be signed in to change notification settings - Fork 23
/
translate.py
271 lines (219 loc) · 9.44 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Translate text or files using trained transformer model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order
from transformer.utils import dataset
from transformer.utils import tokenizer
from transformer.utils.flags import core as flags_core
_DECODE_BATCH_SIZE = 32
_EXTRA_DECODE_LENGTH = 100
_BEAM_SIZE = 4
_ALPHA = 0.6
def _get_sorted_inputs(filename):
"""Read and sort lines from the file sorted by decreasing length.
Args:
filename: String name of file to read inputs from.
Returns:
Sorted list of inputs, and dictionary mapping original index->sorted index
of each element.
"""
with tf.gfile.GFile(filename) as f:
records = f.read().split("\n")
inputs = [record.strip() for record in records]
if not inputs[-1]:
inputs.pop()
# input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)]
# sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True)
#
# sorted_inputs = [None] * len(sorted_input_lens)
# sorted_keys = [0] * len(sorted_input_lens)
# for i, (index, _) in enumerate(sorted_input_lens):
# sorted_inputs[i] = inputs[index]
# sorted_keys[index] = i
#
# return sorted_inputs, sorted_keys
sorted_keys = list(range(len(inputs)))
return inputs, sorted_keys
def _encode_and_add_eos(line, subtokenizer):
"""Encode line with subtokenizer, and add EOS id to the end."""
items = line.split('\t')
query = items[0]
content = items[1]
CLS_ID = subtokenizer.subtoken_to_id_dict['[CLS]']
SEP_ID = subtokenizer.subtoken_to_id_dict['[SEP]']
query_ids = subtokenizer.encode(query)
content_ids = subtokenizer.encode(content)
token_ids = [CLS_ID] + query_ids + [SEP_ID] + content_ids + [tokenizer.EOS_ID]
query_len = len(query_ids) + 2
masks = [1] * query_len + [0] * (len(token_ids) - query_len)
return token_ids, masks
def _trim_and_decode(ids, subtokenizer):
"""Trim EOS and PAD tokens from ids, and decode to return a string."""
try:
index = list(ids).index(tokenizer.EOS_ID)
return subtokenizer.decode(ids[:index])
except ValueError: # No EOS found in sequence
return subtokenizer.decode(ids)
def translate_file(
estimator, subtokenizer, input_file, output_file=None,
print_all_translations=True, vocab_file=None):
"""Translate lines in file, and save to output file if specified.
Args:
estimator: tf.Estimator used to generate the translations.
subtokenizer: Subtokenizer object for encoding and decoding source and
translated lines.
input_file: file containing lines to translate
output_file: file that stores the generated translations.
print_all_translations: If true, all translations are printed to stdout.
Raises:
ValueError: if output file is invalid.
"""
if not vocab_file:
vocab_file = FLAGS.vocab_file
batch_size = _DECODE_BATCH_SIZE
# Read and sort inputs by length. Keep dictionary (original index-->new index
# in sorted list) to write translations in the original order.
sorted_inputs, sorted_keys = _get_sorted_inputs(input_file)
num_decode_batches = (len(sorted_inputs) - 1) // batch_size + 1
def input_generator():
"""Yield encoded strings from sorted_inputs."""
for i, line in enumerate(sorted_inputs):
if i % batch_size == 0:
batch_num = (i // batch_size) + 1
tf.logging.info("Decoding batch %d out of %d." %
(batch_num, num_decode_batches))
yield _encode_and_add_eos(line, subtokenizer)
def _parse_example(serialized_example):
"""Return inputs and targets Tensors from a serialized tf.Example"""
inputs = serialized_example["inputs"]
segments = serialized_example["segments"]
masks = serialized_example["masks"]
targets = serialized_example["targets"]
return (inputs, segments, masks), targets
def input_fn():
"""Created batched dataset of encoded inputs."""
# TODO max_length_source, read from config file...
ds = dataset.init_dataset_from_text_file(
input_file, vocab_file, max_length_source=128, max_length_target=64)
ds = ds.map(_parse_example, num_parallel_calls=None)
ds = ds.batch(batch_size)
return ds
translations = []
for i, prediction in enumerate(estimator.predict(input_fn)):
translation = _trim_and_decode(prediction["outputs"], subtokenizer)
translations.append(translation)
if print_all_translations:
tf.logging.info("Translating:\n\tInput: %s\n\tOutput: %s" %
(sorted_inputs[i], translation))
# Write translations in the order they appeared in the original file.
if output_file is not None:
if tf.gfile.IsDirectory(output_file):
raise ValueError("File output is a directory, will not save outputs to "
"file.")
tf.logging.info("Writing to file %s" % output_file)
with tf.gfile.GFile(output_file, "w") as f:
for i in sorted_keys:
f.write("%s\n" % translations[i])
def translate_text(estimator, subtokenizer, txt):
"""Translate a single string."""
encoded_txt = _encode_and_add_eos(txt, subtokenizer)
def input_fn():
ds = tf.data.Dataset.from_tensors(encoded_txt)
ds = ds.batch(_DECODE_BATCH_SIZE)
return ds
predictions = estimator.predict(input_fn)
translation = next(predictions)["outputs"]
translation = _trim_and_decode(translation, subtokenizer)
tf.logging.info("Translation of \"%s\": \"%s\"" % (txt, translation))
def main(unused_argv):
import transformer_main
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.text is None and FLAGS.file is None:
tf.logging.warn("Nothing to translate. Make sure to call this script using "
"flags --text or --file.")
return
subtokenizer = tokenizer.Subtokenizer(FLAGS.vocab_file)
# Set up estimator and params
params = transformer_main.PARAMS_MAP[FLAGS.param_set]
params["beam_size"] = _BEAM_SIZE
params["alpha"] = _ALPHA
params["extra_decode_length"] = _EXTRA_DECODE_LENGTH
params["batch_size"] = _DECODE_BATCH_SIZE
params["EOS_ID"] = tokenizer.EOS_ID
estimator = tf.estimator.Estimator(
model_fn=transformer_main.model_fn, model_dir=FLAGS.model_dir,
params=params)
if FLAGS.text is not None:
tf.logging.info("Translating text: %s" % FLAGS.text)
translate_text(estimator, subtokenizer, FLAGS.text)
if FLAGS.file is not None:
input_file = os.path.abspath(FLAGS.file)
tf.logging.info("Translating file: %s" % input_file)
if not tf.gfile.Exists(FLAGS.file):
raise ValueError("File does not exist: %s" % input_file)
output_file = None
if FLAGS.file_out is not None:
output_file = os.path.abspath(FLAGS.file_out)
tf.logging.info("File output specified: %s" % output_file)
translate_file(estimator, subtokenizer, input_file, output_file)
def define_translate_flags():
"""Define flags used for translation script."""
# Model flags
flags.DEFINE_string(
name="model_dir", short_name="md", default="/tmp/transformer_model",
help=flags_core.help_wrap(
"Directory containing Transformer model checkpoints."))
flags.DEFINE_enum(
name="param_set", short_name="mp", default="tiny",
enum_values=["base", "big", "tiny"],
help=flags_core.help_wrap(
"Parameter set to use when creating and training the model. The "
"parameters define the input shape (batch size and max length), "
"model configuration (size of embedding, # of hidden layers, etc.), "
"and various other settings. The big parameter set increases the "
"default batch size, embedding/hidden size, and filter size. For a "
"complete list of parameters, please see model/model_params.py."))
flags.DEFINE_string(
name="vocab_file", short_name="vf", default=None,
help=flags_core.help_wrap(
"Path to subtoken vocabulary file. If data_download.py was used to "
"download and encode the training data, look in the data_dir to find "
"the vocab file."))
flags.mark_flag_as_required("vocab_file")
flags.DEFINE_string(
name="text", default=None,
help=flags_core.help_wrap(
"Text to translate. Output will be printed to console."))
flags.DEFINE_string(
name="file", default=None,
help=flags_core.help_wrap(
"File containing text to translate. Translation will be printed to "
"console and, if --file_out is provided, saved to an output file."))
flags.DEFINE_string(
name="file_out", default=None,
help=flags_core.help_wrap(
"If --file flag is specified, save translation to this file."))
if __name__ == "__main__":
define_translate_flags()
FLAGS = flags.FLAGS
absl_app.run(main)