-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalMetric.py
65 lines (49 loc) · 1.43 KB
/
calMetric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import os
import cv2
from skimage.metrics import structural_similarity
from skimage.metrics import peak_signal_noise_ratio
def calpsnr(gt, pred):
return peak_signal_noise_ratio(gt, pred)
def calssim(gt, pred):
return structural_similarity(gt, pred, multichannel=True, gaussian_weights=True)
psnrList = []
ssimList = []
path = './log/output'
psnr = 0
ssim = 0
count = 0
psnr_indoor = 0
ssim_indoor = 0
count_indoor = 0
psnr_outdoor = 0
ssim_outdoor = 0
count_outdoor = 0
for k in range(42):
op = cv2.imread(os.path.join(path, '%d_output.png' % k))
gt = cv2.imread(os.path.join(path, '%d_gt.png' % k))
p = calpsnr(gt, op)
s = calssim(gt, op)
print(k, p, s)
psnr += p
ssim += s
count += 1
if k <= 16:
psnr_indoor += p
ssim_indoor += s
count_indoor += 1
else:
psnr_outdoor += p
ssim_outdoor += s
count_outdoor += 1
psnr /= count
ssim /= count
psnr_indoor /= count_indoor
ssim_indoor /= count_indoor
psnr_outdoor /= count_outdoor
ssim_outdoor /= count_outdoor
print("%f\t%f\t%f\t%f\t%f\t%f" %(psnr, ssim, psnr_indoor, ssim_indoor, psnr_outdoor, ssim_outdoor))
with open(os.path.join(path, 'res1.txt'), 'w') as f:
f.writelines('PSNR:%f, SSIM:%f\n' % (psnr, ssim))
f.writelines('PSNR_indoor:%f, SSIM_indoor:%f\n' % (psnr_indoor, ssim_indoor))
f.writelines('PSNR_outdoor:%f, SSIM_outdoor:%f\n' % (psnr_outdoor, ssim_outdoor))