-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathdm_region.py
102 lines (88 loc) · 3.74 KB
/
dm_region.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
from skimage.measure import label, regionprops
def region_features(region=None):
if region is None:
return {
'area':0, 'area_ratio':0., 'area_ratio2':0., 'eccentricity':0.,
'equivalent_diameter':0., 'euler_number':2, 'extent':0.,
'eig1':0., 'eig2':0., 'major_axis_length':0., 'max_intensity':0.,
'mean_intensity':0., 'minor_axis_length':0., 'orientation':0.,
'perimeter':0., 'solidity':0.,
}
return {
'area':region.area,
'area_ratio':float(region.area)/region.convex_area,
'area_ratio2':float(region.area)/region.filled_area,
'eccentricity':region.eccentricity,
'equivalent_diameter':region.equivalent_diameter,
'euler_number':region.euler_number,
'extent':region.extent,
'eig1':region.inertia_tensor_eigvals[0],
'eig2':region.inertia_tensor_eigvals[1],
'major_axis_length':region.major_axis_length,
'max_intensity':region.max_intensity,
'mean_intensity':region.mean_intensity,
'minor_axis_length':region.minor_axis_length,
'orientation':region.orientation,
'perimeter':region.perimeter,
'solidity':region.solidity,
}
def total_area(regions=[]):
areas = [ reg.area for reg in regions]
return sum(areas)
def global_max_intensity(regions=[]):
max_int = [ reg.max_intensity for reg in regions]
return max(max_int) if len(max_int) > 0 else 0.0
def topK_region_idx(regions, k=1):
areas = [ reg.area for reg in regions]
return np.argsort(areas)[-1:-(k+1):-1]
def prob_heatmap_features(phm, cutoff, k=1, nb_cls=3):
fea_list = []
if phm is None: # deal with missing view.
for _ in xrange(nb_cls - 1): # phms depending on the # of cls.
fea = {'nb_regions': np.nan, 'total_area': np.nan,
'global_max_intensity': np.nan}
for j in xrange(k):
reg_fea = {
'area': np.nan, 'area_ratio': np.nan, 'area_ratio2': np.nan,
'eccentricity': np.nan, 'eig1': np.nan, 'eig2': np.nan,
'equivalent_diameter': np.nan, 'euler_number': np.nan,
'extent': np.nan,
'major_axis_length': np.nan, 'max_intensity': np.nan,
'mean_intensity': np.nan, 'minor_axis_length': np.nan,
'orientation': np.nan, 'perimeter': np.nan,
'solidity': np.nan,
}
for key in reg_fea.keys():
new_key = 'top' + str(j+1) + '_' + key
reg_fea[new_key] = reg_fea.pop(key)
fea.update(reg_fea)
fea_list.append(fea)
return fea_list
for i in xrange(1, nb_cls):
phm_ = phm[:,:,i]
hm_bin = np.zeros_like(phm_, dtype='uint8')
hm_bin[phm_ >= cutoff] = 255
hm_label = label(hm_bin)
props = regionprops(hm_label, phm_)
fea = {
'nb_regions':len(props),
'total_area':total_area(props),
'global_max_intensity':global_max_intensity(props),
}
nb_reg = min(k, len(props))
idx = topK_region_idx(props, k)
for j,x in enumerate(idx):
reg_fea = region_features(props[x])
for key in reg_fea.keys():
new_key = 'top' + str(j+1) + '_' + key
reg_fea[new_key] = reg_fea.pop(key)
fea.update(reg_fea)
for j in xrange(nb_reg, k):
reg_fea = region_features()
for key in reg_fea.keys():
new_key = 'top' + str(j+1) + '_' + key
reg_fea[new_key] = reg_fea.pop(key)
fea.update(reg_fea)
fea_list.append(fea)
return fea_list