-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathdm_inference.py
75 lines (71 loc) · 2.77 KB
/
dm_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import pandas as pd
from dm_region import prob_heatmap_features
INFER_HEADER_VAL = "subjectId\texamIndex\tlaterality\tconfidence\ttarget\n"
INFER_HEADER = "subjectId\tlaterality\tconfidence\n"
def pred_2view_img_list(cc_img_list, mlo_img_list, model, use_mean=False):
'''Make predictions for all pairwise combinations of the 2 views
Returns: a combined score based on the specified function.
'''
pred_cc_list = []
pred_mlo_list = []
for cc in cc_img_list:
for mlo in mlo_img_list:
pred_cc_list.append(cc)
pred_mlo_list.append(mlo)
pred_cc = np.stack(pred_cc_list)
pred_mlo = np.stack(pred_mlo_list)
preds = model.predict_on_batch([pred_cc, pred_mlo])
if use_mean:
pred = preds.mean()
else:
pred = preds.max()
return pred
def make_pred_case(cc_phms, mlo_phms, feature_name, cutoff_list, clf_list,
k=2, nb_phm=None, use_mean=False):
fea_df_list = []
for cutoff in cutoff_list:
cc_ben_list = []
cc_mal_list = []
mlo_ben_list = []
mlo_mal_list = []
cc_fea_list = []
mlo_fea_list = []
for cc_phm in cc_phms[:nb_phm]:
cc_fea_list.append(prob_heatmap_features(cc_phm, cutoff, k))
for mlo_phm in mlo_phms[:nb_phm]:
mlo_fea_list.append(prob_heatmap_features(mlo_phm, cutoff, k))
for cc_fea in cc_fea_list:
for mlo_fea in mlo_fea_list:
cc_mal_list.append(cc_fea[0])
cc_ben_list.append(cc_fea[1])
mlo_mal_list.append(mlo_fea[0])
mlo_ben_list.append(mlo_fea[1])
cc_ben = pd.DataFrame.from_records(cc_ben_list)
cc_mal = pd.DataFrame.from_records(cc_mal_list)
mlo_ben = pd.DataFrame.from_records(mlo_ben_list)
mlo_mal = pd.DataFrame.from_records(mlo_mal_list)
cc_ben.columns = 'cc_ben_' + cc_ben.columns
cc_mal.columns = 'cc_mal_' + cc_mal.columns
mlo_ben.columns = 'mlo_ben_' + mlo_ben.columns
mlo_mal.columns = 'mlo_mal_' + mlo_mal.columns
fea_df = pd.concat([cc_ben, cc_mal, mlo_ben, mlo_mal], axis=1)
try:
fea_df_list.append(fea_df[feature_name])
except KeyError:
fea_df_list.append(fea_df)
all_fea_df = pd.concat(fea_df_list, axis=1)
# import pdb; pdb.set_trace()
if len(clf_list) == 1:
preds = clf_list[0].predict_proba(all_fea_df.values)[:,1]
else:
ens_clf = clf_list[0]
pred_list = []
for clf in clf_list[1:]:
pred_list.append(clf.predict_proba(all_fea_df.values)[:,1])
pred_mat = np.stack(pred_list, axis=1)
preds = ens_clf.predict_proba(pred_mat)[:,1]
if use_mean:
return preds.mean()
else:
return preds.max()