-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
355 lines (288 loc) · 12.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import time
import warnings
import random
import pandas as pd
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingLR
from efficientnet_pytorch import EfficientNet
from lib.io_utils import parse_args
from lib.utils import check_dir, AverageMeter, ProgressMeter
from lib.utils import GradualWarmupScheduler
from lib.dataset import get_loader
from lib.model import se_resnext101_32x48d, wide_se_resnext101_32x32d
from lib.mixup import mixup_data, mixup_criterion
from lib.loss import LabelSmoothingLoss
best_acc1 = 0
def train(train_loader, model, criterion, optimizer, scheduler, epoch, summary_writer, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.mixup:
images, target_a, target_b, lam = mixup_data(images, target, args.alpha)
output = model(images)
loss = mixup_criterion(criterion, output, target_a, target_b, lam)
else:
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
step = epoch * len(train_loader) + i
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step(step)
# log
summary_writer.add_scalar('lr', optimizer.param_groups[0]['lr'], step)
summary_writer.add_scalar('train_acc1', acc1, step)
summary_writer.add_scalar('train_loss', loss, step)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader, model, criterion, epoch, summary_writer, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# log
step = epoch * len(val_loader) + i
summary_writer.add_scalar('val_acc1', acc1, step)
summary_writer.add_scalar('val_loss', loss, step)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def test(test_loader, model, args):
# switch to evaluate mode
model.eval()
results = pd.DataFrame(test_loader.dataset.images, columns=['Id', 'Category'])
results['Id'] = results['Id'].apply(lambda x: x.split('/')[1])
with torch.no_grad():
for i, images in enumerate(test_loader):
images = images.cuda(non_blocking=True)
# compute output
output = model.forward(images)
pred = output.argmax(dim=-1)
results.iloc[i*args.batch_size:(i+1)*args.batch_size, 1] = pred.cpu().numpy()
resultsName = args.output_dir + "results.csv"
results.to_csv(resultsName, index=False)
print(f'=> save results to ' + resultsName)
def extract_features(loader, model, args):
# switch to evaluate mode
model.eval()
with torch.no_grad():
if args.evaluate:
images = np.array(loader.dataset.images)
results = pd.DataFrame(index=range(images.shape[0]), columns=range(101))
results.iloc[:, 0] = images[:, 0]
for i, images in enumerate(tqdm(loader)):
images = images.cuda(non_blocking=True)
# compute output
output = model.forward(images)
if i == len(loader)-1:
results.iloc[i*args.batch_size:i*args.batch_size +
output.shape[0], 1:101] = output.cpu().numpy()[:, :100]
else:
results.iloc[i*args.batch_size:(i+1)*args.batch_size, 1:101] = output.cpu().numpy()[:, :100]
else:
images = np.array(loader.dataset.images)
results = pd.DataFrame(index=range(images.shape[0]), columns=range(102))
results.iloc[:, 0] = images[:, 0]
for i, (images, target) in enumerate(tqdm(loader)):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model.forward(images)
if i == len(loader)-1:
results.iloc[i*args.batch_size:i*args.batch_size +
output.shape[0], 1:101] = output.cpu().numpy()[:, :100]
results.iloc[i*args.batch_size:i*args.batch_size + target.shape[0], 101] = target.cpu().numpy()
else:
results.iloc[i*args.batch_size:(i+1)*args.batch_size, 1:101] = output.cpu().numpy()[:, :100]
results.iloc[i*args.batch_size:(i+1)*args.batch_size, 101] = target.cpu().numpy()
results = results.dropna()
if args.evaluate:
outputName = args.output_dir + "test_output.csv"
else:
outputName = args.output_dir + "output.csv"
results.to_csv(outputName, index=False)
print(f'=> save results to ' + outputName)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_scheduler(optimizer, n_iter_per_epoch, args):
cosine_scheduler = CosineAnnealingLR(
optimizer=optimizer, eta_min=0.000001,
T_max=(args.epochs - args.start_epoch - args.warmup_epoch) * n_iter_per_epoch)
scheduler = GradualWarmupScheduler(
optimizer,
multiplier=args.warmup_multiplier,
total_epoch=args.warmup_epoch * n_iter_per_epoch,
after_scheduler=cosine_scheduler)
return scheduler
def main():
args = parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
global best_acc1
summary_writer = SummaryWriter(args.log_dir)
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
if(args.arch == "efficientNet-b7"):
model = EfficientNet.from_pretrained('efficientnet-b7')
model = nn.DataParallel(model)
elif(args.arch == "resnext101"):
model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x32d_wsl')
model = nn.DataParallel(model)
elif(args.arch == "se_resnet101"):
model = torch.hub.load('moskomule/senet.pytorch', 'se_resnet101', num_classes=100)
elif(args.arch == "se_resnext101"):
model = se_resnext101_32x48d(num_classes=100)
elif(args.arch == "wide_se_resnext101"):
model = wide_se_resnext101_32x32d(num_classes=100)
model = nn.DataParallel(model)
else:
model = models.__dict__[args.arch]()
model = model.cuda()
# Data loading code
if args.features:
train_loader = get_loader(args.data, 'data/train.txt', args.batch_size, args.workers, False)
elif args.augment:
train_loader = get_loader(args.data, 'data/train.txt', args.batch_size, args.workers, True)
else:
train_loader = get_loader(args.data, 'data/train.txt', args.batch_size, args.workers, False)
val_loader = get_loader(args.data, 'data/val.txt', args.batch_size, args.workers, False)
test_loader = get_loader(args.data, 'data/test.txt', args.batch_size, args.workers, False)
# define loss function (criterion), optimizer and scheduler
if args.label_smoothing > 0.0:
criterion = LabelSmoothingLoss(label_smoothing=0.1, tgt_size=1000, keep_index=100).cuda()
else:
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = get_scheduler(optimizer, len(train_loader), args)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint from '{}'".format(args.resume))
# loc = 'cuda' + os.environ["CUDA_VISIBLE_DEVICES"]
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
# scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
if args.features:
if args.evaluate:
extract_features(test_loader, model, args)
else:
extract_features(train_loader, model, args)
return
if args.evaluate:
test(test_loader, model, args)
return
# for epoch in range(args.start_epoch, args.epochs):
for epoch in range(args.epochs - args.start_epoch):
# train for one epoch
train(train_loader, model, criterion, optimizer, scheduler, epoch, summary_writer, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, epoch, summary_writer, args)
# remember best acc@1 and save checkpoint
best_acc1 = max(acc1, best_acc1)
if (epoch + 1) % args.save_freq == 0 or ((epoch + 1) == args.epochs - args.start_epoch):
state = {
'epoch': args.start_epoch + epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'scheduler': scheduler.state_dict(),
}
if (epoch + 1) == args.epochs:
filename = os.path.join(check_dir(args.save_dir), 'best_model.tar')
else:
filename = os.path.join(check_dir(args.save_dir), f'{epoch}.tar')
print(f'=> saving checkpoint to {filename}')
torch.save(state, filename)
test(test_loader, model, args)
if __name__ == '__main__':
main()