- yolor code: https://github.com/WongKinYiu/yolor
- yolor arxiv: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
- get yolor weights from here:
yolor.pt
yolorx.pt
yolor-w6.pt
yolor-e6.pt
yolor-d6.pt
yolor-e6e.pt
For more information, please refer this blog: https://blog.csdn.net/linghu8812/article/details/125741951?spm=1001.2014.3001.5501
Use the following command to export onnx model:
first download yolor models to folder weights
,
git clone https://github.com/linghu8812/yolor.git
cd yolor
python export.py --weights ./weights/yolor.pt
if you want to export onnx model with 1280 image size add --img-size
in command:
python export.py --weights ./weights/yolor-w6.pt --simplify --grid --img-size 1280
cd ../ # in project directory
mkdir build && cd build
cmake ..
make -j
- inference with yolor
cd ../../bin/
./tensorrt_inference yolor ../configs/yolor/config.yaml ../samples/detection_segmentation