-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·233 lines (187 loc) · 9.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import torch
import time
import os, sys, tempfile
import numpy as np
from gym.spaces import Box, Discrete
from pathlib import Path
from torch.autograd import Variable
from utils.make_env import make_env
from utils.buffer import ReplayBuffer
from algorithms.maddpg import MATD3
import datetime
import random
import copy
import shutil
from utils.env_wrappers import SubprocVecEnv, DummyVecEnv
import h5py
try:
from multiagent_mujoco.src.multiagent_mujoco.mujoco_multi import MujocoMulti
except:
print ('MujocoMulti not installed')
def make_parallel_env(env_id, n_rollout_threads, seed, discrete_action):
def get_env_fn(rank):
def init_env():
env = make_env(env_id, discrete_action=discrete_action)
env.seed(seed + rank * 1000)
np.random.seed(seed + rank * 1000)
return env
return init_env
if n_rollout_threads == 1:
return DummyVecEnv([get_env_fn(0)])
else:
return SubprocVecEnv([get_env_fn(i) for i in range(n_rollout_threads)])
def eval_policy(agent, env_name, seed, eval_episodes, discrete_action, env_args=None):
if env_name in ['HalfCheetah-v2']:
env = MujocoMulti(env_args=env_args)
env.seed(seed + 100)
all_episodes_rewards = []
for ep_i in range(eval_episodes):
agent.prep_rollouts(device='cpu')
env.reset()
done = False
episode_reward = 0.
while not done:
obs = env.get_obs()
torch_obs = [Variable(torch.Tensor(obs[i]).unsqueeze(0), requires_grad=False) for i in range(agent.nagents)]
torch_agent_actions = agent.step(torch_obs, explore=False)
agent_actions = [ac.data.numpy() for ac in torch_agent_actions]
actions = [ac.squeeze(0) for ac in agent_actions]
reward, done, info = env.step(actions)
episode_reward += reward
all_episodes_rewards.append(episode_reward)
mean_episode_reward = np.mean(np.array(all_episodes_rewards))
return mean_episode_reward
else:
avg_predator_return = 0.
env = make_parallel_env(env_name, 1, seed + 100, discrete_action)
for ep_i in range(0, eval_episodes):
obs = env.reset()
agent.prep_rollouts(device='cpu')
for et_i in range(config.episode_length):
torch_obs = [Variable(torch.Tensor(np.vstack(obs[:, i])), requires_grad=False) for i in range(agent.nagents)]
torch_agent_actions = agent.step(torch_obs, explore=False)
agent_actions = [ac.data.numpy() for ac in torch_agent_actions]
actions = [[ac[i] for ac in agent_actions] for i in range(config.n_rollout_threads)]
next_obs, rewards, dones, infos = env.step(actions)
if env_name in ['simple_tag', 'simple_world']:
avg_predator_return += rewards[0][0]
else:
avg_agent_reward = np.mean(rewards[0])
avg_predator_return += avg_agent_reward
obs = next_obs
avg_predator_return /= eval_episodes
return avg_predator_return
def offline_train(config):
outdir = prepare_output_dir(config.dir + '/' + config.env_id, argv=sys.argv)
print('\033[1;32mOutput files are saved in {} \033[1;0m'.format(outdir))
torch.manual_seed(config.seed)
np.random.seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
random.seed(config.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(config.n_training_threads)
if config.env_id in ['simple_spread', 'simple_tag', 'simple_world']:
env = make_parallel_env(config.env_id, config.n_rollout_threads, config.seed, config.discrete_action)
env_args, env_info = None, None
else:
env_args = {"scenario": config.env_id, "episode_limit": 1000, "agent_conf": '2x3', "agent_obsk": 0,}
env = MujocoMulti(env_args=env_args)
env.seed(config.seed)
env_info = env.get_env_info()
config.batch_size = 256
config.hidden_dim = 256
config.lr = 0.0003
config.tau = 0.005
config.gamma = 0.99
config.omar_iters = 2
config.omar_num_samples = 20
config.omar_num_elites = 5
ma_agent = MATD3.init_from_env(
env, config.env_id, config.data_type,
tau=config.tau, lr=config.lr, hidden_dim=config.hidden_dim,
cql=config.cql, lse_temp=config.lse_temp, batch_size=config.batch_size, num_sampled_actions=config.num_sampled_actions,
omar=config.omar, omar_iters=config.omar_iters, omar_mu=config.omar_mu, omar_sigma=config.omar_sigma, omar_num_samples=config.omar_num_samples, omar_num_elites=config.omar_num_elites,
env_info=env_info,
)
if config.env_id in ['simple_tag', 'simple_world']:
pretrained_model_dir = './datasets/{}/pretrained_adv_model.pt'.format(config.env_id)
ma_agent.load_pretrained_preys(pretrained_model_dir)
if config.env_id in ['simple_spread', 'simple_tag', 'simple_world']:
replay_buffer = ReplayBuffer(
config.buffer_length, ma_agent.nagents,
[obsp.shape[0] for obsp in env.observation_space],
[acsp.shape[0] if isinstance(acsp, Box) else acsp.n for acsp in env.action_space],
)
else:
replay_buffer = ReplayBuffer(
config.buffer_length, ma_agent.nagents,
[env_info['obs_shape'] for _ in env.observation_space],
[acsp.shape[0] for acsp in env.action_space],
is_mamujoco=True,
state_dims=[env_info['state_shape'] for _ in env.observation_space],
)
replay_buffer.load_batch_data(config.dataset_dir)
for t in range(config.num_steps + 1):
if t % config.eval_interval == 0 or t == config.num_steps:
eval_return = eval_policy(ma_agent, config.env_id, config.seed, config.eval_episodes, config.discrete_action, env_args=env_args)
if (t % config.steps_per_update) < config.n_rollout_threads:
ma_agent.prep_training(device='gpu') if config.use_gpu else ma_agent.prep_training(device='cpu')
for u_i in range(config.n_rollout_threads):
nagents = ma_agent.nagents if config.env_id in ['simple_spread', 'HalfCheetah-v2'] else ma_agent.num_predators
for a_i in range(nagents):
sample = replay_buffer.sample(config.batch_size, to_gpu=config.use_gpu)
ma_agent.update(sample, a_i)
ma_agent.update_all_targets()
env.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dir", help="Name of directory to store model/training contents", type=str, default='results')
parser.add_argument("--env_id", help="Name of environment", type=str, default='simple_spread')
parser.add_argument("--seed", default=0, type=int, help="Random seed")
parser.add_argument("--n_rollout_threads", default=1, type=int)
parser.add_argument("--n_training_threads", default=1, type=int)
parser.add_argument("--discrete_action", action='store_true', default=False)
parser.add_argument("--use_gpu", default=1, type=int)
parser.add_argument("--buffer_length", default=int(1e6), type=int)
parser.add_argument("--episode_length", default=25, type=int)
parser.add_argument("--steps_per_update", default=100, type=int)
parser.add_argument("--batch_size", default=1024, type=int, help="Batch size for model training")
parser.add_argument("--hidden_dim", default=64, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--tau", default=0.01, type=float)
parser.add_argument('--num_updates', default=1, type=int)
parser.add_argument("--gamma", default=0.95, type=float)
parser.add_argument('--gaussian_noise_std', default=0.1, type=float)
parser.add_argument("--data_type", default='medium', type=str)
parser.add_argument('--dataset_dir', default='./datasets', type=str)
parser.add_argument('--eval_episodes', default=10, type=int)
parser.add_argument('--eval_interval', default=1000, type=int)
parser.add_argument('--num_steps', default=int(1e5), type=int)
parser.add_argument('--cql', default=0, type=int)
parser.add_argument('--cql_alpha', default=1.0, type=float)
parser.add_argument("--lse_temp", default=1.0, type=float)
parser.add_argument('--num_sampled_actions', default=10, type=int)
parser.add_argument('--cql_sample_noise_level', default=0.2, type=float)
parser.add_argument('--omar', default=0, type=int)
parser.add_argument('--omar_coe', default=1.0, type=float)
parser.add_argument('--omar_iters', default=3, type=int)
parser.add_argument('--omar_mu', default=0., type=float)
parser.add_argument('--omar_sigma', default=2.0, type=float)
parser.add_argument('--omar_num_samples', default=10, type=int)
parser.add_argument('--omar_num_elites', default=10, type=int)
config = parser.parse_args()
if config.env_id in ['simple_spread', 'simple_tag']:
config.num_steps = 200000
if config.env_id == 'simple_spread' and config.data_type == 'random':
config.num_steps = 600000
elif config.env_id == 'simple_tag' and config.data_type == 'medium-replay':
config.num_steps = 100000
elif config.env_id == 'HalfCheetah-v2':
config.num_steps = int(1e6)
config.steps_per_update = 10
config.eval_interval = 5000
config.dataset_dir = config.dataset_dir + '/' + config.env_id + '/' + config.data_type + '/' + 'seed_{}_data'.format(config.seed)
offline_train(config)