-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfrequency_test.go
142 lines (120 loc) · 3.92 KB
/
frequency_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Copyright 2019, LightStep Inc.
package varopt_test
import (
"fmt"
"math"
"math/rand"
"github.com/lightstep/varopt"
)
type curve struct {
color string
mean float64
stddev float64
}
type testPoint struct {
color int
xvalue float64
}
var colors = []curve{
{color: "red", mean: 10, stddev: 15},
{color: "green", mean: 30, stddev: 10},
{color: "blue", mean: 50, stddev: 20},
}
// This example shows how to use Varopt sampling to estimate
// frequencies with the use of inverse probability weights. The use
// of inverse probability creates a uniform expected value, in this of
// the number of sample points per second.
//
// While the number of expected points per second is uniform, the
// output sample weights are expected to match the original
// frequencies.
func ExampleVaropt_GetOriginalWeight() {
// Number of points.
const totalCount = 1e6
// Relative size of the sample.
const sampleRatio = 0.01
// Ensure this test is deterministic.
rnd := rand.New(rand.NewSource(104729))
// Construct a timeseries consisting of three colored signals,
// for x=0 to x=60 seconds.
var points []testPoint
// origCounts stores the original signals at second granularity.
origCounts := make([][]int, len(colors))
for i := range colors {
origCounts[i] = make([]int, 60)
}
// Construct the signals by choosing a random color, then
// using its Gaussian to compute a timestamp.
for len(points) < totalCount {
choose := rnd.Intn(len(colors))
series := colors[choose]
xvalue := rnd.NormFloat64()*series.stddev + series.mean
if xvalue < 0 || xvalue > 60 {
continue
}
origCounts[choose][int(math.Floor(xvalue))]++
points = append(points, testPoint{
color: choose,
xvalue: xvalue,
})
}
// Compute the total number of points per second. This will be
// used to establish the per-second probability.
xcount := make([]int, 60)
for _, point := range points {
xcount[int(math.Floor(point.xvalue))]++
}
// Compute the sample with using the inverse probability as a
// weight. This ensures a uniform distribution of points in each
// second.
sampleSize := int(sampleRatio * float64(totalCount))
sampler := varopt.New[testPoint](sampleSize, rnd)
for _, point := range points {
second := int(math.Floor(point.xvalue))
prob := float64(xcount[second]) / float64(totalCount)
sampler.Add(point, 1/prob)
}
// sampleCounts stores the reconstructed signals.
sampleCounts := make([][]float64, len(colors))
for i := range colors {
sampleCounts[i] = make([]float64, 60)
}
// pointCounts stores the number of points per second.
pointCounts := make([]int, 60)
// Reconstruct the signals using the output sample weights.
// The effective count of each sample point is its output
// weight divided by its original weight.
for i := 0; i < sampler.Size(); i++ {
point, weight := sampler.Get(i)
origWeight := sampler.GetOriginalWeight(i)
second := int(math.Floor(point.xvalue))
sampleCounts[point.color][second] += (weight / origWeight)
pointCounts[second]++
}
// Compute standard deviation of sample points per second.
sum := 0.0
mean := float64(sampleSize) / 60
for s := 0; s < 60; s++ {
e := float64(pointCounts[s]) - mean
sum += e * e
}
stddev := math.Sqrt(sum / (60 - 1))
fmt.Printf("Samples per second mean %.2f\n", mean)
fmt.Printf("Samples per second standard deviation %.2f\n", stddev)
// Compute mean absolute percentage error between sampleCounts
// and origCounts for each signal.
for c := range colors {
mae := 0.0
for s := 0; s < 60; s++ {
mae += math.Abs(sampleCounts[c][s]-float64(origCounts[c][s])) / float64(origCounts[c][s])
}
mae /= 60
fmt.Printf("Mean absolute percentage error (%s) = %.2f%%\n", colors[c].color, mae*100)
}
// Output:
// Samples per second mean 166.67
// Samples per second standard deviation 13.75
// Mean absolute percentage error (red) = 25.16%
// Mean absolute percentage error (green) = 14.30%
// Mean absolute percentage error (blue) = 14.23%
}