-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathusdt.h
494 lines (454 loc) · 22.5 KB
/
usdt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// SPDX-License-Identifier: BSD-2-Clause
/*
* This single-header library defines a collection of variadic macros for
* defining and triggering USDTs (User Statically-Defined Tracepoints):
*
* - For USDTs without associated semaphore:
* USDT(group, name, args...)
*
* - For USDTs with implicit (transparent to the user) semaphore:
* USDT_WITH_SEMA(group, name, args...)
* USDT_IS_ACTIVE(group, name)
*
* - For USDTs with explicit (user-defined and provided) semaphore:
* USDT_WITH_EXPLICIT_SEMA(sema, group, name, args...)
* USDT_SEMA_IS_ACTIVE(sema)
*
* all of which emit a NOP instruction into the instruction stream, and so
* have *zero* overhead for the surrounding code. USDTs are identified by
* a combination of `group` and `name` identifiers, which is used by external
* tracing tooling (tracers) for identifying exact USDTs of interest.
*
* USDTs can have an associated (2-byte) activity counter (USDT semaphore),
* automatically maintained by Linux kernel whenever any correctly written
* BPF-based tracer is attached to the USDT. This USDT semaphore can be used
* to check whether there is a need to do any extra data collection and
* processing for a given USDT (if necessary), and otherwise avoid extra work
* for a common case of USDT not being traced ("active").
*
* See documentation for USDT_WITH_SEMA()/USDT_IS_ACTIVE() or
* USDT_WITH_EXPLICIT_SEMA()/USDT_SEMA_IS_ACTIVE() APIs below for details on
* working with USDTs with implicitly or explicitly associated
* USDT semaphores, respectively.
*
* There is also some additional data recorded into an auxiliary note
* section. The data in the note section describes the operands, in terms of
* size and location, used by tracing tooling to know where to find USDT
* arguments. Each location is encoded as an assembler operand string.
* Tracing tools (bpftrace and BPF-based tracers, systemtap, etc) insert
* breakpoints on top of the nop, and decode the location operand-strings,
* like an assembler, to find the values being passed.
*
* The operand strings are selected by the compiler for each operand.
* They are constrained by inline-assembler codes.The default is:
*
* #define USDT_ARG_CONSTRAINT nor
*
* This is a good default if the operands tend to be integral and
* moderate in number (smaller than number of registers). In other
* cases, the compiler may report "'asm' requires impossible reload" or
* similar. In this case, consider simplifying the macro call (fewer
* and simpler operands), reduce optimization, or override the default
* constraints string via:
*
* #define USDT_ARG_CONSTRAINT g
* #include <usdt.h>
*
* For some historical description of USDT v3 format (the one used by this
* library and generally recognized and assumed by BPF-based tracing tools)
* see [0]. The more formal specification can be found at [1]. Additional
* argument constraints information can be found at [2].
*
* Original SystemTap's sys/sdt.h implementation ([3]) was used as a base for
* this USDT library implementation. Current implementation differs *a lot* in
* terms of exposed user API and general usability, which was the main goal
* and focus of the reimplementation work. Nevertheless, underlying recorded
* USDT definitions are fully binary compatible and any USDT-based tooling
* should work equally well with USDTs defined by either SystemTap's or this
* library's USDT implementation.
*
* [0] https://ecos.sourceware.org/ml/systemtap/2010-q3/msg00145.html
* [1] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
* [2] https://gcc.gnu.org/onlinedocs/gcc/Constraints.html
* [3] https://sourceware.org/git/?p=systemtap.git;a=blob;f=includes/sys/sdt.h
*/
#ifndef __USDT_H
#define __USDT_H
/*
* Changelog:
*
* 0.1.0
* -----
* - Initial release
*/
#define USDT_MAJOR_VERSION 0
#define USDT_MINOR_VERSION 1
#define USDT_PATCH_VERSION 0
/*
* Trigger USDT with `group`:`name` identifier and pass through `args` as its
* arguments. Zero arguments are acceptable as well. No USDT semaphore is
* associated with this USDT.
*
* Such "semaphoreless" USDTs are commonly used when there is no extra data
* collection or processing needed to collect and prepare USDT arguments and
* they are just available in the surrounding code. USDT() macro will just
* record their locations in CPU registers or in memory for tracing tooling to
* be able to access them, if necessary.
*/
#define USDT(group, name, ...) \
__usdt_probe(group, name, __usdt_sema_none, 0, ##__VA_ARGS__)
/*
* Trigger USDT with `group`:`name` identifier and pass through `args` as its
* arguments. Zero arguments are acceptable as well. USDT also get an
* implicitly-defined associated USDT semaphore, which will be "activated" by
* tracing tooling and can be used to check whether USDT is being actively
* observed.
*
* USDTs with semaphore are commonly used when there is a need to perform
* additional data collection and processing to prepare USDT arguments, which
* otherwise might not be necessary for the rest of application logic. In such
* case, USDT semaphore can be used to avoid unnecessary extra work. If USDT
* is not traced (which is presumed to be a common situation), the associated
* USDT semaphore is "inactive", and so there is no need to waste resources to
* prepare USDT arguments. Use USDT_IS_ACTIVE(group, name) to check whether
* USDT is "active".
*
* N.B. There is an inherent (albeit short) gap between checking whether USDT
* is active and triggering corresponding USDT, in which external tracer can
* be attached to an USDT and activate USDT semaphore after the activity check.
* If such a race occurs, tracers might miss one USDT execution. Tracers are
* expected to accommodate such possibility and this is expected to not be
* a problem for applications and tracers.
*
* N.B. Implicit USDT semaphore defined by USDT_WITH_SEMA() is contained
* within a single executable or shared library and is not shared outside
* them. I.e., if you use USDT_WITH_SEMA() with the same USDT group and name
* identifier across executable and shared library, it will work and won't
* conflict, per se, but will define independent USDT semaphores, one for each
* shared library/executable in which USDT_WITH_SEMA(group, name) is used.
* That is, if you attach to this USDT in one shared library (or executable),
* then only USDT semaphore within that shared library (or executable) will be
* updated by the kernel, while other libraries (or executable) will not see
* activated USDT semaphore. In short, it's best to use unique USDT group:name
* identifiers across different shared libraries (and, equivalently, between
* executable and shared library). This is advanced consideration and is
* rarely (if ever) seen in practice, but just to avoid surprises this is
* called out here. (Static libraries become a part of final executable, once
* linked by linker, so the above considerations don't apply to them.)
*/
#define USDT_WITH_SEMA(group, name, ...) \
__usdt_probe(group, name, \
__usdt_sema_implicit, __usdt_sema_name(group, name), \
##__VA_ARGS__)
struct usdt_sema { volatile unsigned short active; };
/*
* Check if USDT with `group`:`name` identifier is "active" (i.e., whether it
* is attached to by external tracing tooling and is actively observed).
*
* This macro can be used to decide whether any additional and potentially
* expensive data collection or processing should be done to pass extra
* information into the given USDT. It is assumed that USDT is triggered with
* USDT_WITH_SEMA() macro which will implicitly define associated USDT
* semaphore. (If one needs more control over USDT semaphore, see
* USDT_DEFINE_SEMA() and USDT_WITH_EXPLICIT_SEMA() macros below.)
*
* N.B. Such checks are necessarily racy and speculative. Between checking
* whether USDT is active and triggering the USDT itself, tracer can be
* detached with no notification. This race should be extremely rare and worst
* case should result in one-time wasted extra data collection and processing.
*/
#define USDT_IS_ACTIVE(group, name) ({ \
extern struct usdt_sema __usdt_sema_name(group, name) \
__usdt_asm_name(__usdt_sema_name(group, name)); \
__usdt_sema_name(group, name).active > 0; \
})
/*
* APIs for working with user-defined explicit USDT semaphores.
*
* This is a less commonly used advanced API for use cases in which user needs
* an explicit control over (potentially shared across multiple USDTs) USDT
* semaphore instance. This can be used when there is a group of logically
* related USDTs that all need extra data collection and processing whenever
* any of a family of related USDTs are "activated" (i.e., traced). In such
* a case, all such related USDTs will be associated with the same shared USDT
* semaphore defined with USDT_DEFINE_SEMA() and the USDTs themselves will be
* triggered with USDT_WITH_EXPLICIT_SEMA() macros, taking an explicit extra
* USDT semaphore identifier as an extra parameter.
*/
/**
* Underlying C global variable name for user-defined USDT semaphore with
* `sema` identifier. Could be useful for debugging, but normally shouldn't be
* used explicitly.
*/
#define USDT_SEMA(sema) __usdt_sema_##sema
/*
* Define storage for user-defined USDT semaphore `sema`.
*
* Should be used only once in non-header source file to let compiler allocate
* space for the semaphore variable. Just like with any other global variable.
*
* This macro can be used anywhere where global variable declaration is
* allowed. Just like with global variable definitions, there should be only
* one definition of user-defined USDT semaphore with given `sema` identifier,
* otherwise compiler or linker will complain about duplicate variable
* definition.
*
* For C++, it is allowed to use USDT_DEFINE_SEMA() both in global namespace
* and inside namespaces (including nested namespaces). Just make sure that
* USDT_DECLARE_SEMA() is placed within the namespace where this semaphore is
* referenced, or any of its parent namespaces, so the C++ language-level
* identifier is visible to the code that needs to reference the semaphore.
* At the lowest layer, USDT semaphores have global naming and visibility
* (they have a corresponding `__usdt_sema_<name>` symbol, which can be linked
* against from C or C++ code, if necessary). To keep it simple, putting
* USDT_DECLARE_SEMA() declarations into global namespaces is the simplest
* no-brainer solution. All these aspects are irrelevant for plain C, because
* C doesn't have namespaces and everything is always in the global namespace.
*
* N.B. Due to USDT metadata being recorded in non-allocatable ELF note
* section, it has limitations when it comes to relocations, which, in
* practice, means that it's not possible to correctly share USDT semaphores
* between main executable and shared libraries, or even between multiple
* shared libraries. USDT semaphore has to be contained to individual shared
* library or executable to avoid unpleasant surprises with half-working USDT
* semaphores. We enforce this by marking semaphore ELF symbols as having
* a hidden visibility. This is quite an advanced use case and consideration
* and for most users this should have no consequences whatsoever.
*/
#define USDT_DEFINE_SEMA(sema) \
struct usdt_sema __usdt_sema_sec USDT_SEMA(sema) \
__usdt_asm_name(USDT_SEMA(sema)) \
__attribute__((visibility("hidden"))) = { 0 }
/*
* Declare extern reference to user-defined USDT semaphore `sema`.
*
* Refers to a variable defined in another compilation unit by
* USDT_DEFINE_SEMA() and allows to use the same USDT semaphore across
* multiple compilation units (i.e., .c and .cpp files).
*
* See USDT_DEFINE_SEMA() notes above for C++ language usage peculiarities.
*/
#define USDT_DECLARE_SEMA(sema) \
extern struct usdt_sema USDT_SEMA(sema) __usdt_asm_name(USDT_SEMA(sema))
/*
* Check if user-defined USDT semaphore `sema` is "active" (i.e., whether it
* is attached to by external tracing tooling and is actively observed).
*
* This macro can be used to decide whether any additional and potentially
* expensive data collection or processing should be done to pass extra
* information into USDT(s) associated with USDT semaphore `sema`.
*
* N.B. Such checks are necessarily racy. Between checking the state of USDT
* semaphore and triggering associated USDT(s), the active tracer might attach
* or detach. This race should be extremely rare and worst case should result
* in one-time missed USDT event or wasted extra data collection and
* processing. USDT-using tracers should be written with this in mind and is
* not a concern of the application defining USDTs with associated semaphore.
*/
#define USDT_SEMA_IS_ACTIVE(sema) (USDT_SEMA(sema).active > 0)
/*
* Invoke USDT specified by `group` and `name` identifiers and associate
* explicitly user-defined semaphore `sema` with it. Pass through `args` as
* USDT arguments. `args` are optional and zero arguments are acceptable.
*
* Semaphore is defined with the help of USDT_DEFINE_SEMA() macro and can be
* checked whether active with USDT_SEMA_IS_ACTIVE().
*/
#define USDT_WITH_EXPLICIT_SEMA(sema, group, name, ...) \
__usdt_probe(group, name, __usdt_sema_explicit, USDT_SEMA(sema), ##__VA_ARGS__)
/*
* Adjustable implementation aspects
*/
#ifndef USDT_ARG_CONSTRAINT
#if defined __powerpc__
#define USDT_ARG_CONSTRAINT nZr
#elif defined __arm__
#define USDT_ARG_CONSTRAINT g
#else
#define USDT_ARG_CONSTRAINT nor
#endif
#endif /* USDT_ARG_CONSTRAINT */
#ifndef USDT_NOP
#if defined(__ia64__) || defined(__s390__) || defined(__s390x__)
#define USDT_NOP nop 0
#else
#define USDT_NOP nop
#endif
#endif /* USDT_NOP */
/*
* Implementation details
*/
/* USDT name for implicitly-defined USDT semaphore, derived from group:name */
#define __usdt_sema_name(group, name) __usdt_sema_##group##__##name
/* ELF section into which USDT semaphores are put */
#define __usdt_sema_sec __attribute__((section(".probes")))
#define __usdt_concat(a, b) a ## b
#define __usdt_apply(fn, n) __usdt_concat(fn, n)
#ifndef __usdt_nth
#define __usdt_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, N, ...) N
#endif
#ifndef __usdt_narg
#define __usdt_narg(...) __usdt_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#endif
#define __usdt_hash #
#define __usdt_str_(x) #x
#define __usdt_str(x) __usdt_str_(x)
#define __usdt_asm_name(name) __asm__(__usdt_str(name))
#define __usdt_asm1(a) __usdt_str(a) "\n"
#define __usdt_asm2(a,b) __usdt_str(a) "," __usdt_str(b) "\n"
#define __usdt_asm3(a,b,c) __usdt_str(a) "," __usdt_str(b) "," __usdt_str(c) "\n"
#define __usdt_asm5(a,b,c,d,e) __usdt_str(a) "," __usdt_str(b) "," __usdt_str(c) "," \
__usdt_str(d) "," __usdt_str(e) "\n"
#ifdef __LP64__
#define __usdt_asm_addr .8byte
#else
#define __usdt_asm_addr .4byte
#endif
#define __usdt_asm_strz_(x) __usdt_asm1(.asciz #x)
#define __usdt_asm_strz(x) __usdt_asm_strz_(x)
#define __usdt_asm_str_(x) __usdt_asm1(.ascii #x)
#define __usdt_asm_str(x) __usdt_asm_str_(x)
/* "semaphoreless" USDT case */
#define __usdt_sema_none(sema)
/* implicitly defined __usdt_sema__group__name semaphore (using weak symbols) */
#define __usdt_sema_implicit(sema) \
__asm__ __volatile__ ( \
__usdt_asm1(.ifndef sema) \
__usdt_asm3( .pushsection .probes, "aw", "progbits") \
__usdt_asm1( .weak sema) \
__usdt_asm1( .hidden sema) \
__usdt_asm1( .align 2) \
__usdt_asm1(sema:) \
__usdt_asm1( .zero 2) \
__usdt_asm2( .type sema, @object) \
__usdt_asm2( .size sema, 2) \
__usdt_asm1( .popsection) \
__usdt_asm1(.endif) \
);
/* externally defined semaphore using USDT_DEFINE_SEMA() and passed explicitly by user */
#define __usdt_sema_explicit(sema) \
__asm__ __volatile__ ("" :: "m" (sema));
/* main USDT definition (nop and .note.stapsdt metadata) */
#define __usdt_probe(group, name, sema_def, sema, ...) do { \
sema_def(sema) \
__asm__ __volatile__ ( \
__usdt_asm1(990: USDT_NOP) \
__usdt_asm3( .pushsection .note.stapsdt, "", "note") \
__usdt_asm1( .balign 4) \
__usdt_asm3( .4byte 992f-991f,994f-993f,3) \
__usdt_asm1(991: .asciz "stapsdt") \
__usdt_asm1(992: .balign 4) \
__usdt_asm1(993: __usdt_asm_addr 990b) \
__usdt_asm1( __usdt_asm_addr _.stapsdt.base) \
__usdt_asm1( __usdt_asm_addr sema) \
__usdt_asm_strz(group) \
__usdt_asm_strz(name) \
__usdt_asm_args(__VA_ARGS__) \
__usdt_asm1( .ascii "\0") \
__usdt_asm1(994: .balign 4) \
__usdt_asm1( .popsection) \
__usdt_asm1(.ifndef _.stapsdt.base) \
__usdt_asm5( .pushsection .stapsdt.base,"aG","progbits",.stapsdt.base,comdat)\
__usdt_asm1( .weak _.stapsdt.base) \
__usdt_asm1( .hidden _.stapsdt.base) \
__usdt_asm1(_.stapsdt.base:) \
__usdt_asm1( .space 1) \
__usdt_asm2( .size _.stapsdt.base, 1) \
__usdt_asm1( .popsection) \
__usdt_asm1(.endif) \
:: __usdt_asm_ops(__VA_ARGS__) \
); \
} while (0)
/*
* NB: gdb PR24541 highlighted an unspecified corner of the sdt.h
* operand note format.
*
* The named register may be a longer or shorter (!) alias for the
* storage where the value in question is found. For example, on
* i386, 64-bit value may be put in register pairs, and a register
* name stored would identify just one of them. Previously, gcc was
* asked to emit the %w[id] (16-bit alias of some registers holding
* operands), even when a wider 32-bit value was used.
*
* Bottom line: the byte-width given before the @ sign governs. If
* there is a mismatch between that width and that of the named
* register, then a sys/sdt.h note consumer may need to employ
* architecture-specific heuristics to figure out where the compiler
* has actually put the complete value.
*/
#if defined(__powerpc__) || defined(__powerpc64__)
#define __usdt_argref(id) %I[id]%[id]
#elif defined(__i386__)
#define __usdt_argref(id) %k[id] /* gcc.gnu.org/PR80115 sourceware.org/PR24541 */
#else
#define __usdt_argref(id) %[id]
#endif
#define __usdt_asm_arg(n) __usdt_asm_str(%c[__usdt_asz##n]) \
__usdt_asm1(.ascii "@") \
__usdt_asm_str(__usdt_argref(__usdt_aval##n))
#define __usdt_asm_args0 /* no arguments */
#define __usdt_asm_args1 __usdt_asm_arg(1)
#define __usdt_asm_args2 __usdt_asm_args1 __usdt_asm1(.ascii " ") __usdt_asm_arg(2)
#define __usdt_asm_args3 __usdt_asm_args2 __usdt_asm1(.ascii " ") __usdt_asm_arg(3)
#define __usdt_asm_args4 __usdt_asm_args3 __usdt_asm1(.ascii " ") __usdt_asm_arg(4)
#define __usdt_asm_args5 __usdt_asm_args4 __usdt_asm1(.ascii " ") __usdt_asm_arg(5)
#define __usdt_asm_args6 __usdt_asm_args5 __usdt_asm1(.ascii " ") __usdt_asm_arg(6)
#define __usdt_asm_args7 __usdt_asm_args6 __usdt_asm1(.ascii " ") __usdt_asm_arg(7)
#define __usdt_asm_args8 __usdt_asm_args7 __usdt_asm1(.ascii " ") __usdt_asm_arg(8)
#define __usdt_asm_args9 __usdt_asm_args8 __usdt_asm1(.ascii " ") __usdt_asm_arg(9)
#define __usdt_asm_args10 __usdt_asm_args9 __usdt_asm1(.ascii " ") __usdt_asm_arg(10)
#define __usdt_asm_args11 __usdt_asm_args10 __usdt_asm1(.ascii " ") __usdt_asm_arg(11)
#define __usdt_asm_args12 __usdt_asm_args11 __usdt_asm1(.ascii " ") __usdt_asm_arg(12)
#define __usdt_asm_args(...) __usdt_apply(__usdt_asm_args, __usdt_narg(__VA_ARGS__))
#define __usdt_is_arr(x) (__builtin_classify_type(x) == 14 || __builtin_classify_type(x) == 5)
#define __usdt_arg_size(x) (__usdt_is_arr(x) ? sizeof(void *) : sizeof(x))
/*
* We can't use __builtin_choose_expr() in C++, so fall back to table-based
* signedness determination for known types, utilizing templates magic.
*/
#ifdef __cplusplus
#define __usdt_is_signed(x) (!__usdt_is_arr(x) && __usdt_t<__typeof(x)>::is_signed)
#include <cstddef>
template<typename T> struct __usdt_t { static const bool is_signed = false; };
template<typename A> struct __usdt_t<A[]> : public __usdt_t<A *> {};
template<typename A, size_t N> struct __usdt_t<A[N]> : public __usdt_t<A *> {};
#define __usdt_def_signed(T) \
template<> struct __usdt_t<T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<const T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<volatile T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<const volatile T> { static const bool is_signed = true; }
#define __usdt_maybe_signed(T) \
template<> struct __usdt_t<T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<const T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<volatile T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<const volatile T> { static const bool is_signed = (T)-1 < (T)1; }
__usdt_def_signed(signed char);
__usdt_def_signed(short);
__usdt_def_signed(int);
__usdt_def_signed(long);
__usdt_def_signed(long long);
__usdt_maybe_signed(char);
__usdt_maybe_signed(wchar_t);
#else /* !__cplusplus */
#define __usdt_is_inttype(x) (__builtin_classify_type(x) >= 1 && __builtin_classify_type(x) <= 4)
#define __usdt_inttype(x) __typeof(__builtin_choose_expr(__usdt_is_inttype(x), (x), 0U))
#define __usdt_is_signed(x) ((__usdt_inttype(x))-1 < (__usdt_inttype(x))1)
#endif /* __cplusplus */
#define __usdt_asm_op(n, x) \
[__usdt_asz##n] "n" ((__usdt_is_signed(x) ? (int)-1 : 1) * (int)__usdt_arg_size(x)), \
[__usdt_aval##n] __usdt_str(USDT_ARG_CONSTRAINT)(x)
#define __usdt_asm_ops0() [__usdt_dummy] "g" (0)
#define __usdt_asm_ops1(x) __usdt_asm_op(1, x)
#define __usdt_asm_ops2(a,x) __usdt_asm_ops1(a), __usdt_asm_op(2, x)
#define __usdt_asm_ops3(a,b,x) __usdt_asm_ops2(a,b), __usdt_asm_op(3, x)
#define __usdt_asm_ops4(a,b,c,x) __usdt_asm_ops3(a,b,c), __usdt_asm_op(4, x)
#define __usdt_asm_ops5(a,b,c,d,x) __usdt_asm_ops4(a,b,c,d), __usdt_asm_op(5, x)
#define __usdt_asm_ops6(a,b,c,d,e,x) __usdt_asm_ops5(a,b,c,d,e), __usdt_asm_op(6, x)
#define __usdt_asm_ops7(a,b,c,d,e,f,x) __usdt_asm_ops6(a,b,c,d,e,f), __usdt_asm_op(7, x)
#define __usdt_asm_ops8(a,b,c,d,e,f,g,x) __usdt_asm_ops7(a,b,c,d,e,f,g), __usdt_asm_op(8, x)
#define __usdt_asm_ops9(a,b,c,d,e,f,g,h,x) __usdt_asm_ops8(a,b,c,d,e,f,g,h), __usdt_asm_op(9, x)
#define __usdt_asm_ops10(a,b,c,d,e,f,g,h,i,x) __usdt_asm_ops9(a,b,c,d,e,f,g,h,i), __usdt_asm_op(10, x)
#define __usdt_asm_ops11(a,b,c,d,e,f,g,h,i,j,x) __usdt_asm_ops10(a,b,c,d,e,f,g,h,i,j), __usdt_asm_op(11, x)
#define __usdt_asm_ops12(a,b,c,d,e,f,g,h,i,j,k,x) __usdt_asm_ops11(a,b,c,d,e,f,g,h,i,j,k), __usdt_asm_op(12, x)
#define __usdt_asm_ops(...) __usdt_apply(__usdt_asm_ops, __usdt_narg(__VA_ARGS__))(__VA_ARGS__)
#endif /* __USDT_H */