-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
197 lines (147 loc) · 4.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gym
import torch
import numpy as np
import sys
import os
from naf import NAF
from normalized_actions import NormalizedActions
from ounoise import OUNoise
from replay_buffer import ReplayBuffer, Transition
from plot import plot_results
EPISODE_TO_SCORE = 1
device_name = 'cuda:0' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device_name}')
DEVICE = torch.device(device_name)
DTYPE = torch.float
args_mc = {'env_name': 'MountainCarContinuous-v0',
'seed': 42,
'gamma': 1,
'tau': 0.001,
'hidden_size': 200,
'replay_size': 1000000,
'num_episodes': 1000,
'batch_size': 128,
'replay_num_updates': 5,
'ou_noise': True,
'noise_scale': 3,
'final_noise_scale': 0,
'exploration_end': 500,
'evaluate_episodes': 100}
args_pd = {'env_name': 'Pendulum-v0',
'seed': 42,
'gamma': 1,
'tau': 0.001,
'hidden_size': 200,
'replay_size': 20000,
'num_episodes': 1000,
'batch_size': 128,
'replay_num_updates': 5,
'ou_noise': True,
'noise_scale': 1,
'final_noise_scale': 0.1,
'exploration_end': 400,
'evaluate_episodes': 100}
args_ll = {'env_name': 'LunarLanderContinuous-v2',
'seed': 42,
'gamma': 1,
'tau': 0.001,
'hidden_size': 200,
'replay_size': 100000,
'num_episodes': 1000,
'batch_size': 128,
'replay_num_updates': 5,
'ou_noise': True,
'noise_scale': 3,
'final_noise_scale': 0.1,
'exploration_end': 500,
'evaluate_episodes': 100}
def run():
num_steps = 0
for episode in range(args['num_episodes']):
state = env.reset()
update_noise(episode)
episode_steps = 0
is_done = False
while not is_done:
act = agent.select_action(state, ounoise)
suc_state, reward, is_done, _ = env.step(act)
num_steps += 1
episode_steps += 1
done_mask = 0.0 if is_done else 1.0
replay_buffer.push([state], [act], [done_mask], [suc_state], [reward])
state = suc_state
if len(replay_buffer) > args['batch_size']:
train_on_minibatches()
if episode % EPISODE_TO_SCORE == 0:
eval_score = evaluate_policy()
report_results(episode + 1, num_steps, eval_score)
print(
f'Episode: {episode + 1}, Total numsteps: {num_steps}, '
f'Score: {eval_score}')
if episode % 5 == 0:
agent.save_model(args['env_name'])
env.close()
def run_simulation():
done = False
t = 0
gt = 0
state = env.reset()
while not done:
action = agent.select_action(state)
state, reward, done, _ = env.step(action)
gt += reward * (args['gamma'] ** t)
if done:
break
t += 1
return gt
def evaluate_policy():
acc = 0
for i in range(args['evaluate_episodes']):
res = run_simulation()
acc += res
return acc / args['evaluate_episodes']
def update_noise(episode):
if ounoise:
ounoise.scale = (args['noise_scale'] - args['final_noise_scale']) * \
max(0, args['exploration_end'] - episode) / args['exploration_end'] + \
args['final_noise_scale']
ounoise.reset()
def train_on_minibatches():
for i in range(args['replay_num_updates']):
transitions = replay_buffer.sample(args['batch_size'])
batch = Transition(*zip(*transitions))
agent.update_parameters(batch)
def report_results(episode, numsteps, score):
results_path = 'results'
os.makedirs(results_path, exist_ok=True)
file_name = f'results_{args["env_name"]}.csv'
file_path = os.path.join(results_path, file_name)
add_head = file_name not in os.listdir(results_path)
file1 = open(file_path, "a+")
if add_head:
file1.write("Episode,TotalSteps,Score\n")
file1.write(f'{episode},{numsteps},{score}\n')
file1.close()
if __name__ == '__main__':
env = sys.argv[1]
args = None
if env == 'mc':
args = args_mc
elif env == 'pd':
args = args_pd
elif env == 'll':
args = args_ll
else:
print('Environment not selected, Please choose from: mc, pd,ll')
exit(-1)
env = NormalizedActions(gym.make(args['env_name']))
env.seed(args['seed'])
torch.manual_seed(args['seed'])
np.random.seed(args['seed'])
agent = NAF(args['gamma'], args['tau'], args['hidden_size'],
env.observation_space.shape[0], env.action_space)
agent.load_model(f'models/naf_{args["env_name"]}')
replay_buffer = ReplayBuffer(args['replay_size'])
ounoise = OUNoise(env.action_space.shape[0]) if args['ou_noise'] else None
run()
plot_results()