-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
28 lines (26 loc) · 862 Bytes
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from math import log2
import numpy as np
def log_transform(s):
for row in range(s.shape[0]):
for col in range(s.shape[1]):
if s[row][col] != 0:
s[row][col] = log2(s[row][col])
return s
# Doesn't seem to help
def trim_sparse_features(s, features_to_keep=None):
new = []
print(s.shape[1])
if not features_to_keep:
print('this?')
features_to_keep = []
for col in range(s.shape[1]):
nonzero = [i for i in s[:,col] if i > 0]
if len(nonzero) > 1:
features_to_keep.append(col)
print('keeping', len(features_to_keep))
for row in range(s.shape[0]):
new.append([])
for col in range(s.shape[1]):
if col in features_to_keep:
new[row].append(s[row][col])
return np.array(new), features_to_keep