This repository has been archived by the owner on Oct 12, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapu.c
587 lines (536 loc) · 19.1 KB
/
apu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/* Xep128: Minimalistic Enterprise-128 emulator with focus on "exotic" hardware
Copyright (C)2014,2015,2016 LGB (Gábor Lénárt) <lgblgblgb@gmail.com>
http://xep128.lgb.hu/
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "xep128.h"
#include "apu.h"
#include "cpu.h"
#include <math.h>
/* From my JSep emulator:
*
* (C)2014 Gábor Lénárt LGB http://ep.lgb.hu/jsep/
* Part of my JavaScript based Enterprise-128 emulator ("JSep" aka "webemu").
* Am9511 "APU" FPU emulation, somewhat (ehhh, a lot!) incorrect
*
* Thanks to Povi for testing APU support.
*
* http://www.hartetechnologies.com/manuals/AMD/AMD%209511%20FPU.pdf
* http://www.joelowens.org/z80/am9511algorithms.pdf
* http://www.joelowens.org/z80/am9511fpmanual.pdf
*
* Major problems with my emulation:
*
* Precision: converts data between APU formats and JS numeric, real Am9511 may give a sightly different results in case of floats.
* Timing: uses constant timings, real APU varies execution times depending on the operands.
* Stack content: real APU destroys some elements in case of some OPS other than TOS. This is not emulated.
* APU status: I am not always sure what status flags modified and how.
* Results: I am not always sure even about the result of ops. Eg: SMUL/SMUU, what happens on signed values, etc, result can be even WRONG.
* Usage: emulation always assumes Z80 will be stopped, no WAIT/SRV etc (so bit 7 of command does not count either)
* Cleanness: my code uses pop/push primitives which is often quite expensive, but the code is more compact and it's enough for a few MHz chip emulation in JS still :)
*/
static Uint8 _apu_stack[16];
static int _apu_tos;
static Uint8 _apu_status;
// Note: NEGARG,ZERODIV,LARGE are truely not independent, you should not mix them, but use only one! Others can be "mixed"
#define _APU_F_CARRY 1
#define _APU_F_OVERFLOW 2
#define _APU_F_UNDERFLOW 4
#define _APU_F_NEGARG 8
#define _APU_F_ZERODIV 16
#define _APU_F_LARGE 24
#define _APU_F_ZERO 32
#define _APU_F_SIGN 64
//#define _APU_F_BUSY 128 // this is not used, as APU for EP is used to stop Z80 while working, so Z80 will never found this bit set, thus there is no need to set ...
void apu_reset ( void )
{
_apu_status = 0;
_apu_tos = 0;
memset(_apu_stack, 0, sizeof _apu_stack);
}
Uint8 apu_read_status( void )
{
return _apu_status;
}
static void _apu_move( int n)
{
_apu_tos = (_apu_tos + n) & 0xF;
}
static Uint8 _apu_look8(int depth)
{
return _apu_stack[(_apu_tos - depth) & 0xF];
}
static Uint8 _apu_pop8()
{
_apu_move(-1);
return _apu_look8(-1);
}
Uint8 apu_read_data()
{
return _apu_pop8();
}
static void _apu_push8(Uint8 data)
{
_apu_move(1);
//_apu_tos = (_apu_tos + 1) & 0xF;
_apu_stack[_apu_tos] = data; // will be trucated to byte
}
void apu_write_data(Uint8 data)
{
_apu_push8(data);
}
static int _apu_pop_fix16(void) {
int data = _apu_pop8() << 8;
data |= _apu_pop8();
if (data & 0x8000) data = data - 0x10000; // two's complement correction
return data;
}
// push fix16 format, also updates the status (zero, sign, overflow)
static void _apu_push_fix16(int data) {
if (data == 0) _apu_status |= _APU_F_ZERO; // zero flag
else if (data < 0) {
_apu_status |= _APU_F_SIGN; // negative flag
data += 0x10000; // two's complement correction
}
if (data > 0xFFFF || data < 0) _apu_status |= _APU_F_OVERFLOW; // overflow flag [WTF]
_apu_push8(data);
_apu_push8(data >> 8);
}
static Sint64 _apu_pop_fix32(void) {
Sint64 data = _apu_pop8() << 24;
data |= _apu_pop8() << 16;
data |= _apu_pop8() << 8;
data |= _apu_pop8();
if (data > 2147483647L) data = data - 4294967296L; // two's complement correction
return data;
}
static void _apu_push_fix32(Sint64 data) {
if (data == 0) _apu_status |= _APU_F_ZERO;
else if (data < 0) {
_apu_status |= _APU_F_SIGN;
data += 4294967296L;
}
if (data > 4294967295UL || data < 0) _apu_status |= _APU_F_OVERFLOW;
_apu_push8(data);
_apu_push8(data >> 8);
_apu_push8(data >> 16);
_apu_push8(data >> 24);
}
/* Foreword for FLOAT handling: I use natural float (well, double ...)
* numberic format of C, using pop/push APU functions to convert from/to.
* This is kinda messy, and not bit-exact emulation of Am9511.
* Even my lame push/pop functions can be done much better!!
*/
static double _apu_pop_float()
{
int exp = _apu_pop8();
int data = _apu_pop8() << 16;
double fdata;
data |= _apu_pop8() << 8;
data |= _apu_pop8();
if (!(data & 0x800000)) return 0.0; // MSB of mantissa must be 1 always, _except_ for the value zero, where all bytes should be zero (including the MSB of mantissa)
if (exp & 128) data = -data;
if (exp & 64) exp = (exp & 63) - 64; else exp &= 63;
fdata = pow(2, exp) * ((double)data / 16777216.0);
//DEBUG("APU: float is internally pop'ed: %f" NL, fdata);
return fdata;
}
static void _apu_push_float(double data)
{
int neg, exp , i;
if (!isfinite(data)) { // this should be true for the whole condition of argument is NaN of Infinity ...
_apu_push8(0); // bad result for NaN, but something should be there (_apu_move() would be better one to "rollback" the stack?!)
_apu_push8(0);
_apu_push8(0);
_apu_push8(0);
_apu_status |= _APU_F_LARGE;
return;
}
if (data == 0) { // if value is zero, we handle it as a special case, as logarithm function would panic on value of zero.
_apu_push8(0);
_apu_push8(0);
_apu_push8(0);
_apu_push8(0);
_apu_status |= _APU_F_ZERO; // zero flag
return;
}
neg = data < 0; // remember the sign of the value (bool)
data = fabs(data);
exp = log2(data);
data = data / pow(2, exp);
i = (data * 16777216.0);
if (i >= 16777216) {
// ehm, not normalized mantissa or such a problem?
i >>= 1;
exp++;
} else if (i == 0) {
exp = 0;
_apu_status |= _APU_F_ZERO | _APU_F_UNDERFLOW; // since we handled zero case at the begining, zero value here means the underflow-gap, I guess
}
if (exp > 63) {
exp &= 63;
_apu_status |= _APU_F_OVERFLOW;
} else if (exp < -64) {
//exp = -((-exp) & 63); // WRONG! TODO, FIXME, HELP, ETC :D
exp = ((64 + exp) & 63) | 64;
_apu_status |= _APU_F_OVERFLOW;
} else if (exp < 0) {
exp = ((64 + exp) & 63) | 64;
}
if (neg) {
exp |= 128;
_apu_status |= _APU_F_SIGN; // negative flag
}
//if (data && (!(data & 0x800000)))
// DEBUG("APU: warning: irregular manitssa: ", data);
// Pushing 8 bit bytes onto the APU stack
_apu_push8(i);
_apu_push8(i >> 8);
_apu_push8(i >> 16);
_apu_push8(exp); // this byte holds the exponent, and also the sign of the mantissa
//if (data == 0) _apu_status |= _APU_F_UNDERFLOW; // hmmm. zero case is handled at the beginning, so if it's zero we are in the underflow-gap of the format. or whatever :D
}
// set S and Z flags of status on TOS, interpreting it as fixed 16 format
static void _apu_sz_fix16(void) {
if (_apu_look8(0) & 128) _apu_status |= _APU_F_SIGN;
if (_apu_look8(0) + _apu_look8(1) == 0) _apu_status |= _APU_F_ZERO; // this testing method for zeroness works as apu_look8() gives back only unsigned bytes ...
}
static void _apu_sz_fix32(void) {
if (_apu_look8(0) & 128) _apu_status |= _APU_F_SIGN;
if (_apu_look8(0) + _apu_look8(1) + _apu_look8(2) + _apu_look8(3) == 0) _apu_status |= _APU_F_ZERO;
}
static void _apu_sz_float(void) {
if (_apu_look8(0) & 128) _apu_status |= _APU_F_SIGN;
if ((_apu_look8(1) & 128) == 0) _apu_status |= _APU_F_ZERO; // we use only a single bit to test the zeroness of a float.
}
static void _apu_xchg(int d1, int d2) {
Uint8 n = _apu_look8(d1);
_apu_stack[(_apu_tos - d1) & 0xF] = _apu_look8(d2);
_apu_stack[(_apu_tos - d2) & 0xF] = n;
}
static void _apu_copy(int from, int to) {
_apu_stack[(_apu_tos - to) & 0xF] = _apu_look8(from);
}
/* Note, call of this function should be AFTER calling _apu_push* functions as those may set overflow flag we want to keep as cleared here ...
* I am still not sure about the difference of overflow and underflow, also not the over-/underflow and carry. For the second problem:
* it's said that the maximal (or minimal value) can be extended by the carry flag, so there are three cases basically: a number can
* be represented without overflow and carry, the number can be represented as carry to be thought of the extension of the result,
* and the overflow, when the result can't represented even with the extended result size by the carry bit. Hmmm. But then, should
* carry to be set in case of overflow, or not?
* */
static void _apu_carry ( Sint64 val, Sint64 limit )
{
if (val >= limit * 2 || val < -limit * 2) {
_apu_status |= _APU_F_OVERFLOW;
// should carry set here????????????????
_apu_status |= _APU_F_CARRY;
} else if (val >= limit || val < -limit) {
_apu_status &= 255 - _APU_F_OVERFLOW;
_apu_status |= _APU_F_CARRY;
}
}
/* Note: most of the command emulation uses the fix32/fix16/float POP/PUSH functions.
* In some cases it's not the optimal solution (performance) but it's much simplier.
* However in case of floats it can cause some odd things, ie APU-float<->C-double conversion
* rounding problems on POP/PUSH ... Well maybe I will deal with this later versions,
* now the short solution ... */
void apu_write_command ( Uint8 cmd )
{
int i;
Sint64 l;
double f;
//int _apu_tos_old = _apu_tos;
int clocks = 0;
_apu_status = 0; // I am still not sure that ops according to spec which "do not affect a flag" means that it is UNCHANGED from the previous op, or simply zero and never set. Hmmm.
switch (cmd & 0x7F) { // note, SR (bit7) field of command is currently ignored!
/* --------------------------------------- */
/* ---- 16 bit fixed point operations ---- */
/* --------------------------------------- */
case 0x6C: // SADD: Add TOS to NOS. Result to NOS. Pop Stack.
i = _apu_pop_fix16() + _apu_pop_fix16();
_apu_push_fix16(i);
_apu_carry(i, 0x8000);
clocks = 17;
break;
case 0x6D: // SSUB: Substract TOS from NOS. Result to NOS. Pop Stack.
i = _apu_pop_fix16();
i = _apu_pop_fix16() - i;
_apu_push_fix16(i);
_apu_carry(i, 0x8000);
clocks = 31;
break;
case 0x6E: // SMUL: Multiply NOS by TOS. Lower result to NOS. Pop Stack.
i = _apu_pop_fix16() * _apu_pop_fix16();
_apu_push_fix16(i);
clocks = 89;
break;
case 0x76: // SMUU: Multiply NOS by TOS. Upper result to NOS. Pop Stack.
i = _apu_pop_fix16() * _apu_pop_fix16();
_apu_push_fix16(i >> 16);
clocks = 87;
break;
case 0x6F: // SDIV: Divide NOS by TOS. Result to NOS. Pop Stack.
i = _apu_pop_fix16(); // TOS
if (i) {
_apu_push_fix16(_apu_pop_fix16() / i);
clocks = 89;
} else { // TOS = 0, divide by zero error
// TOS = 0 case, APU simply puts old NOS as result, that is, leave the original NOS, which is now the TOS
_apu_status |= _APU_F_ZERODIV;
clocks = 14;
}
break;
/* --------------------------------------- */
/* ---- 32 bit fixed point operations ---- */
/* --------------------------------------- */
case 0x2C: // DADD: Add TOS to NOS. Result to NOS. Pop Stack.
l = _apu_pop_fix32() + _apu_pop_fix32();
_apu_push_fix32(l);
_apu_carry(l, 0x80000000L);
clocks = 21;
break;
case 0x2D: // DSUB: Substract TOS from NOS. Result to NOS. Pop Stack.
l = _apu_pop_fix32();
l = _apu_pop_fix32() - l;
_apu_push_fix32(l);
_apu_carry(l, 0x80000000L);
clocks = 39;
break;
case 0x2E: // DMUL: Multiply NOS by TOS. Lower result to NOS. Pop Stack.
l = _apu_pop_fix32() * _apu_pop_fix32();
_apu_push_fix32(l);
clocks = 200;
break;
case 0x36: // DMUU: Multiply NOS by TOS. Upper result to NOS. Pop Stack.
l = _apu_pop_fix32() * _apu_pop_fix32();
_apu_push_fix32(l >> 32);
clocks = 200;
break;
case 0x2F: // DDIV: Divide NOS by TOS. Result to NOS. Pop Stack.
l = _apu_pop_fix32(); // TOS
if (l) {
_apu_push_fix32(_apu_pop_fix32() / l);
clocks = 200;
} else { // TOS = 0, divide by zero error
// TOS = 0 case, APU simply puts old NOS as result, that is, leave the original NOS, which is now the TOS
_apu_status |= _APU_F_ZERODIV;
clocks = 18;
}
break;
/* -------------------------------------------------- */
/* ---- 32 bit floating point primary operations ---- */
/* -------------------------------------------------- */
case 0x10: // FADD: Add TOS to NOS. Result to NOS. Pop Stack.
f = _apu_pop_float();
_apu_push_float(_apu_pop_float() + f);
clocks = (f ? 200 : 24);
break;
case 0x11: // FSUB: Substract TOS from NOS. Result to NOS. Pop Stack.
f = _apu_pop_float();
_apu_push_float(_apu_pop_float() - f);
clocks = (f ? 200 : 26);
break;
case 0x12: // FMUL: Multiply NOS by TOS. Result to NOS. Pop Stack.
_apu_push_float(_apu_pop_float() * _apu_pop_float());
clocks = 150;
break;
case 0x13: // FDIV: Divide NOS by TOS. Result to NOS. Pop Stack.
f = _apu_pop_float();
if (f) {
_apu_push_float(_apu_pop_float() / f);
clocks = 170;
} else { // TOS = 0, divide by zero error
// TOS = 0 case, APU simply puts old NOS as result, that is, leave the original NOS, which is now the TOS
_apu_status |= _APU_F_ZERODIV;
clocks = 22;
}
break;
/* -------------------------------------------------- */
/* ---- 32 bit floating point derived operations ---- */
/* -------------------------------------------------- */
case 0x01: // SQRT: Square Root of TOS. Result to TOS.
f = _apu_pop_float();
_apu_push_float(sqrt(fabs(f))); // we still want to do something with negative number ..., so use fabs() but set the error status on the next line too
if (f < 0) _apu_status |= _APU_F_NEGARG; // negative argument signal
clocks = 800;
break;
case 0x02: // SIN: Sine of TOS. Result to TOS.
_apu_push_float(sin(_apu_pop_float()));
clocks = 4000;
break;
case 0x03: // COS: Cosine of TOS. Result to TOS.
_apu_push_float(cos(_apu_pop_float()));
clocks = 4000;
break;
case 0x04: // TAN: Tangent of TOS. Result to TOS.
_apu_push_float(tan(_apu_pop_float()));
clocks = 5000;
break;
case 0x05: // ASIN: Inverse Sine of TOS. Result to TOS.
_apu_push_float(asin(_apu_pop_float()));
clocks = 7000;
break;
case 0x06: // ACOS: Inverse Cosine of TOS. Result to TOS.
_apu_push_float(acos(_apu_pop_float()));
clocks = 7000;
break;
case 0x07: // ATAN: Inverse Tangent of TOS. Result to TOS.
_apu_push_float(atan(_apu_pop_float()));
clocks = 5000;
break;
case 0x08: // LOG: Common Logarithm of TOS. Result to TOS.
f = _apu_pop_float();
if (f > 0) {
_apu_push_float(log10(f));
clocks = 5500;
} else {
_apu_status |= _APU_F_NEGARG;
_apu_move(4);
clocks = 20;
}
break;
case 0x09: // LN: Natural Logarithm of TOS. Result to TOS.
f = _apu_pop_float();
if (f > 0) {
_apu_push_float(log(f));
clocks = 5500;
} else {
_apu_status |= _APU_F_NEGARG;
_apu_move(4);
clocks = 20;
}
break;
case 0x0A: // EXP: "e" raised to power in TOS. Result to TOS.
f = _apu_pop_float();
_apu_push_float(pow(M_E, f));
clocks = (f > 32 ? 34 : 4000);
break;
case 0x0B: // PWR: NOS raised to power in TOS. Result to TOS. Pop Stack.
f = _apu_pop_float();
_apu_push_float(pow(_apu_pop_float(), f));
clocks = 10000;
break;
/* ------------------------------------------------ */
/* ---- data and stack manipulation operations ---- */
/* ------------------------------------------------ */
case 0x00: // NOP: does nothing (but clears status, however it's the first instruction done in the main func already
clocks = 4;
break;
case 0x1F: // FIXS: Convert TOS from floating point format to fixed point format (16 bit).
_apu_push_fix16(_apu_pop_float());
clocks = 150;
break;
case 0x1E: // FIXD: Convert TOS from floating point format to fixed point format (32 bit).
_apu_push_fix32(_apu_pop_float());
clocks = 200;
break;
case 0x1D: // FLTS: Convert TOS from fixed point format (16 bit) to floating point format.
_apu_push_float(_apu_pop_fix16());
clocks = 100;
break;
case 0x1C: // FLTD: Convert TOS from fixed point format (32 bit) to floating point format.
_apu_push_float(_apu_pop_fix32());
clocks = 200;
break;
case 0x74: // CHSS: Change sign of fixed point (16 bit) operand on TOS.
_apu_push_fix16(-_apu_pop_fix16());
clocks = 23;
break;
case 0x34: // CHSD: Change sign of fixed point (32 bit) operand on TOS.
_apu_push_fix32(-_apu_pop_fix32());
clocks = 27;
break;
case 0x15: // CHSF: Change sign of floating point operand on TOS. Note: that does not seem to be a big issue, as a single bit should be modified??
if (_apu_look8(1) & 128) { // if number is not zero
_apu_stack[_apu_tos] ^= 128;
if (_apu_stack[_apu_tos] & 128) _apu_status |= _APU_F_SIGN;
} else // if number is zero, nothing happens (but we sets zero flag)
_apu_status |= _APU_F_ZERO;
clocks = 18;
break;
case 0x77: // PTOS: Push stack. Duplicate NOS to TOS.
_apu_move(2);
_apu_copy(2, 0);
_apu_copy(3, 1);
_apu_sz_fix16();
clocks = 16;
break;
case 0x37: // PTOD: Push stack. Duplicate NOS to TOS.
_apu_move(4);
_apu_copy(4, 0);
_apu_copy(5, 1);
_apu_copy(6, 2);
_apu_copy(7, 3);
_apu_sz_fix32();
clocks = 20;
break;
case 0x17: // PTOF: Push stack. Duplicate NOS to TOS.
_apu_move(4);
_apu_copy(4, 0);
_apu_copy(5, 1);
_apu_copy(6, 2);
_apu_copy(7, 3);
_apu_sz_float();
clocks = 20;
break;
case 0x78: // POPS: Pop stack. Old NOS becomes new TOS, old TOS rotates to bottom.
_apu_move(-2);
_apu_sz_fix16(); // set "sz" (S and Z status flags) by inspecting (new) TOS
clocks = 10;
break;
case 0x38: // POPD: Pop stack. Old NOS becomes new TOS, old TOS rotates to bottom.
_apu_move(-4);
_apu_sz_fix32();
clocks = 12;
break;
case 0x18: // POPF: Pop stack. Old NOS becomes new TOS, old TOS rotates to bottom.
_apu_move(-4);
_apu_sz_float();
clocks = 12;
break;
case 0x79: // XCHS: Exchange NOS and TOS. (16 bit fixed)
_apu_xchg(0, 2);
_apu_xchg(1, 3);
_apu_sz_fix16();
clocks = 18;
break;
case 0x39: // XCHD: Exchange NOS and TOS. (32 bit fixed)
_apu_xchg(0, 4);
_apu_xchg(1, 5);
_apu_xchg(2, 6);
_apu_xchg(3, 7);
_apu_sz_fix32();
clocks = 26;
break;
case 0x19: // XCHF: Exchange NOS and TOS. (float stuff)
_apu_xchg(0, 4);
_apu_xchg(1, 5);
_apu_xchg(2, 6);
_apu_xchg(3, 7);
_apu_sz_float();
clocks = 26;
break;
case 0x1A: // PUPI: Push floating point constant PI onto TOS. Previous TOS becomes NOS.
_apu_push8(0xDA);
_apu_push8(0x0F);
_apu_push8(0xC9);
_apu_push8(0x02);
clocks = 16;
break;
default:
DEBUG("APU: not implemented/unknown Am9511 command: %02Xh" NL, cmd);
clocks = 4; // no idea what happens.
break;
}
clocks *= CPU_CLOCK;
z80ex_w_states((clocks % APU_CLOCK) ? ((clocks / APU_CLOCK) + 1) : (clocks / APU_CLOCK));
}