-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
96 lines (80 loc) · 3.23 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
MIT License
Copyright (c) 2017 Sadeep Jayasumana
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import numpy as np
from PIL import Image
# Pascal VOC color palette for labels
_PALETTE = [0, 0, 0,
128, 0, 0,
0, 128, 0,
128, 128, 0,
0, 0, 128,
128, 0, 128,
0, 128, 128,
128, 128, 128,
64, 0, 0,
192, 0, 0,
64, 128, 0,
192, 128, 0,
64, 0, 128,
192, 0, 128,
64, 128, 128,
192, 128, 128,
0, 64, 0,
128, 64, 0,
0, 192, 0,
128, 192, 0,
0, 64, 128,
128, 64, 128,
0, 192, 128,
128, 192, 128,
64, 64, 0,
192, 64, 0,
64, 192, 0,
192, 192, 0]
_IMAGENET_MEANS = np.array([123.68, 116.779, 103.939], dtype=np.float32) # RGB mean values
def get_preprocessed_image(file_name):
""" Reads an image from the disk, pre-processes it by subtracting mean etc. and
returns a numpy array that's ready to be fed into a Keras model.
Note: This method assumes 'channels_last' data format in Keras.
"""
image = Image.open(file_name)
original_size = image.size
w, h = original_size
ratio = min(500.0 / w, 500.0 / h)
image = image.resize((int(w * ratio), int(h * ratio)), resample=Image.BILINEAR)
im = np.array(image).astype(np.float32)
assert im.ndim == 3, 'Only RGB images are supported.'
im = im[:, :, :3]
im = im - _IMAGENET_MEANS
im = im[:, :, ::-1] # Convert to BGR
img_h, img_w, _ = im.shape
pad_h = 500 - img_h
pad_w = 500 - img_w
im = np.pad(im, pad_width=((0, pad_h), (0, pad_w), (0, 0)), mode='constant', constant_values=0)
return np.expand_dims(im.astype(np.float32), 0), img_h, img_w, original_size
def get_label_image(probs, img_h, img_w, original_size):
""" Returns the label image (PNG with Pascal VOC colormap) given the probabilities.
Note: This method assumes 'channels_last' data format.
"""
labels = probs.argmax(axis=2).astype('uint8')[:img_h, :img_w]
label_im = Image.fromarray(labels, 'P')
label_im.putpalette(_PALETTE)
label_im = label_im.resize(original_size)
return label_im