-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
280 lines (271 loc) · 12.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import glob
import skimage.io as io
import skimage.transform as trans
from PIL import Image
import cv2
import os,array
import pandas as pd
def adjustData(img,mask,flag_multi_class,num_class):
if(flag_multi_class):
img = img / 255
mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range(num_class):
#for one pixel in the image, find the class in mask and convert it into one-hot vector
#index = np.where(mask == i)
#index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
#new_mask[index_mask] = 1
new_mask[mask == i,i] = 1
new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2]))
mask = new_mask
elif(np.max(img) > 1):
img = img / 255
mask = mask /255
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return (img,mask)
def adjustDataforAuencoder(img,mask,flag_multi_class,num_class):
if(flag_multi_class):
img = img / 255
mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range(num_class):
#for one pixel in the image, find the class in mask and convert it into one-hot vector
#index = np.where(mask == i)
#index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
#new_mask[index_mask] = 1
new_mask[mask == i,i] = 1
new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2]))
mask = new_mask
elif(np.max(img) > 1):
img = img / 255
mask = mask /255
return (img,mask)
def trainGenerator ( batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "rgb",
mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask",
flag_multi_class = False,num_class = 2,save_to_dir = None,image_size=160,seed = 1 ):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
target_size = (image_size,image_size)
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
image_generator = image_datagen.flow_from_directory(
train_path,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = image_save_prefix,
seed = seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = mask_save_prefix,
seed = seed)
train_generator = zip(image_generator, mask_generator)
for (img,mask) in train_generator:
img,mask = adjustData(img,mask,flag_multi_class,num_class)
yield (img,mask)
def ValidationGenerator(test_path,num_image = 109,image_size = 160,flag_multi_class = False,as_gray = True):
target_size = (image_size,image_size)
for i in range(num_image):
img = io.imread(os.path.join(test_path,"%d.png"%i),as_gray = as_gray)
img = img / 255
img = trans.resize(img,target_size)
img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape)
yield img
def AutoEncoder_trainGenerator ( batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "rgb",
mask_color_mode = "rgb",image_save_prefix = "image",mask_save_prefix = "mask",
flag_multi_class = False,num_class = 1,save_to_dir = None,image_size=160,seed = 1 ):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
target_size = (image_size,image_size)
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
image_generator = image_datagen.flow_from_directory(
train_path,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = image_save_prefix,
seed = seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = mask_save_prefix,
seed = seed)
train_generator = zip(image_generator, mask_generator)
for (img,mask) in train_generator:
img,mask = adjustData(img,mask,flag_multi_class,num_class)
yield (img,mask)
def Pretext_trainGenerator ( batch_size,train_path,image_folder,mask_folder,aug_dict_img,aug_dict_mask,image_color_mode = "rgb",
mask_color_mode = "rgb",image_save_prefix = "image",mask_save_prefix = "label",
flag_multi_class = False,num_class = 1,save_to_dir = None,image_size=160,seed = 1 ):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
target_size = (image_size,image_size)
image_datagen = ImageDataGenerator(**aug_dict_img)
mask_datagen = ImageDataGenerator(**aug_dict_mask)
image_generator = image_datagen.flow_from_directory(
train_path,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = image_save_prefix,
seed = seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = mask_save_prefix,
seed = seed)
train_generator = zip(image_generator, mask_generator)
for (img,mask) in train_generator:
img,mask = adjustDataforAuencoder(img,mask,flag_multi_class,num_class)
yield (img,mask)
def AutoEncoder_ValidationGenerator(test_path,num_image = 109,image_size = 160,flag_multi_class = False,as_gray = False):
target_size = (image_size,image_size)
for i in range(num_image):
img = io.imread(os.path.join(test_path,"%d.png"%i),as_gray = as_gray)
img = img / 255
img = trans.resize(img,target_size)
img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape)
yield img
def geneTrainNpy(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix = "image",mask_prefix = "mask",image_as_gray = True,mask_as_gray = True):
image_name_arr = glob.glob(os.path.join(image_path,"%s*.png"%image_prefix))
image_arr = []
mask_arr = []
for index,item in enumerate(image_name_arr):
img = io.imread(item,as_gray = image_as_gray)
img = np.reshape(img,img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path,mask_path).replace(image_prefix,mask_prefix),as_gray = mask_as_gray)
mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask
img,mask = adjustData(img,mask,flag_multi_class,num_class)
image_arr.append(img)
mask_arr.append(mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)
return image_arr,mask_arr
def labelVisualize(num_class,color_dict,img):
img = img[:,:,0] if len(img.shape) == 3 else img
img_out = np.zeros(img.shape + (3,))
for i in range(num_class):
img_out[img == i,:] = color_dict[i]
return img_out / 255
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2):
for i,item in enumerate(npyfile):
img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0]
io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
def testGenerator(test_path,num_image = 300,target_size = (384,384),flag_multi_class = False,as_gray = False):
sourceFiles1 = os.listdir(test_path)
for i in range(len(sourceFiles1)):
img = io.imread(os.path.join(test_path,sourceFiles1[i]),as_gray = as_gray)
img = img / 255
img = trans.resize(img,target_size)
#img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape)
yield img
def savePredictLabelToCVS(save_path,fileName,imagesize,testlen,results):
columnNames = list()
width = imagesize
height = imagesize
wxh=width * height
columnNames = list()
columnNames.append('id')
for i in range(wxh):
pixel = 'p'
pixel += str(i)
columnNames.append(pixel)
result_data = pd.DataFrame(columns = columnNames)
for i in range(testlen):
data = []
data.append(i)
rawData=np.reshape(results[i]*255, (width, height))
for y in range(width):
for x in range(height):
data.append(rawData[x,y])
k = 0
result_data.loc[i] = [data[k] for k in range(wxh+1)]
result_data.to_csv(os.path.join(resultFolder,fileName),index = False)
def savePredictLabelToImg(save_path,imagesize,testlen,results):
width = imagesize
height = imagesize
wxh=width * height
for i in range(testlen):
rawData=np.reshape(results[i]*255, (width, height))
im = Image.fromarray(rawData)
im.save(os.path.join(save_path,str(i)+'.bmp'))
def saveResultToCSV(save_path,fileName,imagesize,testlen,results):
import os,array
import numpy
import pandas as pd
columnNames = list()
width = 384
height = 384
wxh=width * height
columnNames = list()
columnNames.append('val_acc')
columnNames.append('val_dice')
columnNames.append('val_iou')
columnNames.append('val_recall')
columnNames.append('val_precision')
columnNames.append('val_f1')
columnNames.append('val_specificity')
evaluate_data = pd.DataFrame(columns = columnNames)
data = []
data.append(Colon_scores_val[1])
data.append(Colon_scores_val[2])
data.append(Colon_scores_val[3])
data.append(Colon_scores_val[4])
data.append(Colon_scores_val[5])
data.append(Colon_scores_val[6])
data.append(Colon_scores_val[7])
evaluate_data.loc[0] = [data[k] for k in range(7)]
valuate_data.to_csv(os.path.join(resultFolder,fileName),index = False)
def ConvertToArray(test_path,num_image = 300,target_size = (384,384),as_gray = True):
sourceFiles1 = os.listdir(test_path)
img_arr=np.zeros(num_image)
for i in range(len(sourceFiles1)):
img = io.imread(os.path.join(test_path,sourceFiles1[i]),as_gray = True)
img = img / 255
img = trans.resize(img,target_size)
#img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape)
img_arr.append(img)
return img_arr