forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
df_regr.py
87 lines (71 loc) · 3.58 KB
/
df_regr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
from cuml.ensemble import RandomForestRegressor
parser = argparse.ArgumentParser(description='cuml random forest '
'regression benchmark')
parser.add_argument('--split-algorithm', type=str, default='hist',
choices=('hist', 'global_quantile'),
help='The algorithm to determine how '
'nodes are split in the tree')
parser.add_argument('--num-trees', type=int, default=100,
help='Number of trees in the forest')
parser.add_argument('--max-features', type=bench.float_or_int, default=1.0,
help='Upper bound on features used at each split')
parser.add_argument('--max-depth', type=int, default=16,
help='Upper bound on depth of constructed trees')
parser.add_argument('--min-samples-split', type=bench.float_or_int, default=2,
help='Minimum samples number for node splitting')
parser.add_argument('--max-leaf-nodes', type=int, default=-1,
help='Maximum leaf nodes per tree')
parser.add_argument('--min-impurity-decrease', type=float, default=0.0,
help='Needed impurity decrease for node splitting')
parser.add_argument('--no-bootstrap', dest='bootstrap', default=True,
action='store_false', help="Don't control bootstraping")
params = bench.parse_args(parser)
# Load and convert data
X_train, X_test, y_train, y_test = bench.load_data(params, int_label=True)
if params.split_algorithm == 'hist':
params.split_algorithm = 0
else:
params.split_algorithm = 1
# Create our random forest regressor
regr = RandomForestRegressor(
n_estimators=params.num_trees,
split_algo=params.split_algorithm,
max_features=params.max_features,
min_samples_split=params.min_samples_split,
max_depth=params.max_depth,
max_leaves=params.max_leaf_nodes,
min_impurity_decrease=params.min_impurity_decrease,
bootstrap=params.bootstrap,
)
def fit(regr, X, y):
return regr.fit(X, y)
def predict(regr, X):
return regr.predict(X, predict_model='GPU')
fit_time, _ = bench.measure_function_time(fit, regr, X_train, y_train, params=params)
y_pred = predict(regr, X_train)
train_rmse = bench.rmse_score(y_pred, y_train)
predict_time, y_pred = bench.measure_function_time(predict, regr, X_test, params=params)
test_rmse = bench.rmse_score(y_pred, y_test)
bench.print_output(library='cuml', algorithm='df_regr',
stages=['training', 'prediction'], params=params,
functions=['df_regr.fit', 'df_regr.predict'],
times=[fit_time, predict_time], metric_type='rmse',
metrics=[train_rmse, test_rmse], data=[X_train, X_test],
alg_instance=regr)