-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
55 lines (48 loc) · 1.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
""" This module contains the main code to run.
"""
import os
from rush_hour.vehicle import Vehicle
from rush_hour.board import RushHourBoard
from rush_hour.problems import (
ZeroHeuristic, ManhattanDistanceHeuristic, BlockingVehiclesHeuristic,
ImprovedBlockingVehiclesHeuristic, DistanceImprovedBlockingVehiclesHeuristic
)
from py_search.uninformed import (breadth_first_search, depth_first_search)
from py_search.informed import (
best_first_search, iterative_deepening_best_first_search
)
from py_search.utils import compare_searches
# Get boards path
DIR_PATH = os.path.abspath(os.path.dirname(__file__))
BOARDS_PATH = os.path.join(DIR_PATH, "boards")
if __name__ == "__main__":
# Loop over each board
for board_number in os.listdir(BOARDS_PATH):
# Open board file
with open(os.path.join(BOARDS_PATH, board_number), 'r') as f:
# Get each vehicle in board
vehicles = [
Vehicle(symbol, int(x), int(y), orientation)
for symbol, x, y, orientation in f.read().splitlines()
]
# Create board
board = RushHourBoard(vehicles)
# print board number
print(f"\n\n{board_number}")
# Run BFS and DFS
compare_searches(
problems=[
ZeroHeuristic(initial=board),
], searches=[breadth_first_search, depth_first_search]
)
# Run A* & IDA*
compare_searches(
problems=[
ZeroHeuristic(initial=board),
ManhattanDistanceHeuristic(initial=board),
BlockingVehiclesHeuristic(initial=board),
ImprovedBlockingVehiclesHeuristic(initial=board),
DistanceImprovedBlockingVehiclesHeuristic(initial=board),
],
searches=[best_first_search, iterative_deepening_best_first_search]
)