-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChestXRay.py
290 lines (223 loc) · 9.66 KB
/
ChestXRay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.densenet import DenseNet121
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model
from keras import backend as K
from keras.models import load_model
import util
from public_tests import *
from test_utils import *
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
train_df = pd.read_csv("data/nih/train-small.csv")
valid_df = pd.read_csv("data/nih/valid-small.csv")
test_df = pd.read_csv("data/nih/test.csv")
train_df.head()
labels = ['Cardiomegaly',
'Emphysema',
'Effusion',
'Hernia',
'Infiltration',
'Mass',
'Nodule',
'Atelectasis',
'Pneumothorax',
'Pleural_Thickening',
'Pneumonia',
'Fibrosis',
'Edema',
'Consolidation']
def check_for_leakage(df1, df2, patient_col):
"""
Return True if there any patients are in both df1 and df2.
Args:
df1 (dataframe): dataframe describing first dataset
df2 (dataframe): dataframe describing second dataset
patient_col (str): string name of column with patient IDs
Returns:
leakage (bool): True if there is leakage, otherwise False
"""
df1_patients_unique = set(df1[patient_col])
df2_patients_unique = set(df2[patient_col])
patients_in_both_groups = df1_patients_unique.intersection(df2_patients_unique)
leakage = len(patients_in_both_groups)!=0
return leakage
print("leakage between train and valid: {}".format(check_for_leakage(train_df, valid_df, 'PatientId')))
print("leakage between train and test: {}".format(check_for_leakage(train_df, test_df, 'PatientId')))
print("leakage between valid and test: {}".format(check_for_leakage(valid_df, test_df, 'PatientId')))
def get_train_generator(df, image_dir, x_col, y_cols, shuffle=True, batch_size=8, seed=1, target_w = 320, target_h = 320):
"""
Return generator for training set, normalizing using batch
statistics.
Args:
train_df (dataframe): dataframe specifying training data.
image_dir (str): directory where image files are held.
x_col (str): name of column in df that holds filenames.
y_cols (list): list of strings that hold y labels for images.
batch_size (int): images per batch to be fed into model during training.
seed (int): random seed.
target_w (int): final width of input images.
target_h (int): final height of input images.
Returns:
train_generator (DataFrameIterator): iterator over training set
"""
print("getting train generator...")
# normalize images
image_generator = ImageDataGenerator(
samplewise_center=True,
samplewise_std_normalization= True)
# flow from directory with specified batch size
# and target image size
generator = image_generator.flow_from_dataframe(
dataframe=df,
directory=image_dir,
x_col=x_col,
y_col=y_cols,
class_mode="raw",
batch_size=batch_size,
shuffle=shuffle,
seed=seed,
target_size=(target_w,target_h))
return generator
def get_test_and_valid_generator(valid_df, test_df, train_df, image_dir, x_col, y_cols, sample_size=100, batch_size=8, seed=1, target_w = 320, target_h = 320):
"""
Return generator for validation set and test set using
normalization statistics from training set.
Args:
valid_df (dataframe): dataframe specifying validation data.
test_df (dataframe): dataframe specifying test data.
train_df (dataframe): dataframe specifying training data.
image_dir (str): directory where image files are held.
x_col (str): name of column in df that holds filenames.
y_cols (list): list of strings that hold y labels for images.
sample_size (int): size of sample to use for normalization statistics.
batch_size (int): images per batch to be fed into model during training.
seed (int): random seed.
target_w (int): final width of input images.
target_h (int): final height of input images.
Returns:
test_generator (DataFrameIterator) and valid_generator: iterators over test set and validation set respectively
"""
print("getting train and valid generators...")
# get generator to sample dataset
raw_train_generator = ImageDataGenerator().flow_from_dataframe(
dataframe=train_df,
directory=IMAGE_DIR,
x_col="Image",
y_col=labels,
class_mode="raw",
batch_size=sample_size,
shuffle=True,
target_size=(target_w, target_h))
# get data sample
batch = raw_train_generator.next()
data_sample = batch[0]
# use sample to fit mean and std for test set generator
image_generator = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization= True)
# fit generator to sample from training data
image_generator.fit(data_sample)
# get test generator
valid_generator = image_generator.flow_from_dataframe(
dataframe=valid_df,
directory=image_dir,
x_col=x_col,
y_col=y_cols,
class_mode="raw",
batch_size=batch_size,
shuffle=False,
seed=seed,
target_size=(target_w,target_h))
test_generator = image_generator.flow_from_dataframe(
dataframe=test_df,
directory=image_dir,
x_col=x_col,
y_col=y_cols,
class_mode="raw",
batch_size=batch_size,
shuffle=False,
seed=seed,
target_size=(target_w,target_h))
return valid_generator, test_generator
IMAGE_DIR = "data/nih/images-small/"
train_generator = get_train_generator(train_df, IMAGE_DIR, "Image", labels)
valid_generator, test_generator= get_test_and_valid_generator(valid_df, test_df, train_df, IMAGE_DIR, "Image", labels)
plt.xticks(rotation=90)
plt.bar(x=labels, height=np.mean(train_generator.labels, axis=0))
plt.title("Frequency of Each Class")
plt.show()
def compute_class_freqs(labels):
"""
Compute positive and negative frequences for each class.
Args:
labels (np.array): matrix of labels, size (num_examples, num_classes)
Returns:
positive_frequencies (np.array): array of positive frequences for each
class, size (num_classes)
negative_frequencies (np.array): array of negative frequences for each
class, size (num_classes)
"""
N = np.shape(labels)[0]
positive_frequencies = np.sum(labels, axis=0)/N
negative_frequencies = 1- positive_frequencies
return positive_frequencies, negative_frequencies
freq_pos, freq_neg = compute_class_freqs(train_generator.labels)
freq_pos
data = pd.DataFrame({"Class": labels, "Label": "Positive", "Value": freq_pos})
data = data.append([{"Class": labels[l], "Label": "Negative", "Value": v} for l,v in enumerate(freq_neg)], ignore_index=True)
plt.xticks(rotation=90)
f = sns.barplot(x="Class", y="Value", hue="Label" ,data=data)
pos_weights = freq_neg
neg_weights = freq_pos
pos_contribution = freq_pos * pos_weights
neg_contribution = freq_neg * neg_weights
data = pd.DataFrame({"Class": labels, "Label": "Positive", "Value": pos_contribution})
data = data.append([{"Class": labels[l], "Label": "Negative", "Value": v}
for l,v in enumerate(neg_contribution)], ignore_index=True)
plt.xticks(rotation=90)
sns.barplot(x="Class", y="Value", hue="Label" ,data=data);
def get_weighted_loss(pos_weights, neg_weights, epsilon=1e-7):
"""
Return weighted loss function given negative weights and positive weights.
Args:
pos_weights (np.array): array of positive weights for each class, size (num_classes)
neg_weights (np.array): array of negative weights for each class, size (num_classes)
Returns:
weighted_loss (function): weighted loss function
"""
def weighted_loss(y_true, y_pred):
"""
Return weighted loss value.
Args:
y_true (Tensor): Tensor of true labels, size is (num_examples, num_classes)
y_pred (Tensor): Tensor of predicted labels, size is (num_examples, num_classes)
Returns:
loss (float): overall scalar loss summed across all classes
"""
# initialize loss to zero
loss = 0.0
for i in range(len(pos_weights)):
loss += K.mean(-(pos_weights[i]*y_true[:,i]*K.log(y_pred[:,i]+epsilon)+neg_weights[i]*(1-y_true[:,i])*K.log(1-y_pred[:,i]+epsilon)))
return loss
return weighted_loss
# create the base pre-trained model
base_model = DenseNet121(weights='models/nih/densenet.hdf5', include_top=False)
x = base_model.output
# add a global spatial average pooling layer
x = GlobalAveragePooling2D()(x)
# and a logistic layer
predictions = Dense(len(labels), activation="sigmoid")(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=get_weighted_loss(pos_weights, neg_weights))
model.load_weights("models/nih/pretrained_model.h5")
predicted_vals = model.predict_generator(test_generator, steps = len(test_generator))
auc_rocs = util.get_roc_curve(labels, predicted_vals, test_generator)
df = pd.read_csv("data/nih/train-small.csv")
IMAGE_DIR = "data/nih/images-small/"
# only show the labels with top 4 AUC
labels_to_show = np.take(labels, np.argsort(auc_rocs)[::-1])[:4]