-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathops.py
101 lines (82 loc) · 3.55 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import tensorflow as tf
from setting import *
def conv_layer(input, weights, bias, pad, stride, i, net):
pad = pad[0]
stride = stride[0]
input = tf.pad(input, [[0, 0], [pad[0], pad[1]], [pad[2], pad[3]], [0, 0]], "CONSTANT")
w = tf.Variable(weights, name='w' + str(i), dtype='float32')
b = tf.Variable(bias, name='bias' + str(i), dtype='float32')
net['weights' + str(i)] = w
net['b' + str(i)] = b
conv = tf.nn.conv2d(input, w, strides=[1, stride[0], stride[1], 1], padding='VALID', name='conv' + str(i))
return tf.nn.bias_add(conv, b, name='add' + str(i))
def full_conv(input, weights, bias, i, net):
w = tf.Variable(weights, name='w' + str(i), dtype='float32')
b = tf.Variable(bias, name='bias' + str(i), dtype='float32')
net['weights' + str(i)] = w
net['b' + str(i)] = b
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding='VALID', name='fc' + str(i))
return tf.nn.bias_add(conv, b, name='add' + str(i))
def pool_layer(input, stride, pad, area):
pad = pad[0]
area = area[0]
stride = stride[0]
input = tf.pad(input, [[0, 0], [pad[0], pad[1]], [pad[2], pad[3]], [0, 0]], "CONSTANT")
return tf.nn.max_pool(input, ksize=[1, area[0], area[1], 1], strides=[1, stride[0], stride[1], 1], padding='VALID')
def conv2d(input, kernel, strides, padding, init_rate, name):
with tf.variable_scope(name):
W = tf.Variable(tf.random_normal(kernel, stddev=init_rate) * 0.01)
b = tf.Variable(tf.random_normal([kernel[-1]], stddev=init_rate) * 0.01)
conv = tf.nn.conv2d(input, W, strides=strides, padding=padding)
out = tf.nn.bias_add(conv, b)
return out
# activate function
def lrelu(x, leak=0.2):
return tf.maximum(x, leak*x)
def relu(x):
return tf.nn.relu(x)
def sigmoid(x):
return tf.nn.sigmoid(x)
def tanh(x):
return tf.nn.tanh(x)
# loss
def mse_criterion(in_, target):
return tf.reduce_mean(tf.nn.l2_loss(in_ - target))
def sce_criterion(logits, labels):
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
#
def ClipIfNotNone(grad):
if grad is None:
return grad
return tf.clip_by_value(grad, -1., 1.)
def calc_neighbor(label_1, label_2):
Sim = (np.dot(label_1, label_2.transpose()) > 0).astype(int)*0.999
return Sim
# normalization
def local_norm(x):
return tf.nn.local_response_normalization(x, depth_radius=2, bias=2.000, alpha=0.0001, beta=0.75)
def batch_norm(x, name="batch_norm"):
return tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
def interp_block(text_input, level):
shape = [1, 1, 5 * level, 1]
stride = [1, 1, 5 * level, 1]
prev_layer = tf.nn.avg_pool(text_input, ksize=shape, strides=stride, padding='VALID')
W_fc1 = tf.random_normal([1, 1, 1, 1], stddev=1.0) * 0.01
fc1W = tf.Variable(W_fc1)
prev_layer = tf.nn.conv2d(prev_layer, fc1W, strides=[1, 1, 1, 1], padding='VALID')
prev_layer = tf.nn.relu(prev_layer)
prev_layer = tf.image.resize_images(prev_layer, [1, dimTxt])
return prev_layer
def MultiScaleTxt(text_input, input):
interp_block1 = interp_block(input, 10)
interp_block2 = interp_block(input, 6)
interp_block3 = interp_block(input, 3)
interp_block6 = interp_block(input, 2)
interp_block10 = interp_block(input, 1)
output = tf.concat([text_input,
interp_block10,
interp_block6,
interp_block3,
interp_block2,
interp_block1], axis=-1)
return output