-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathdarknet19.py
137 lines (124 loc) · 7.51 KB
/
darknet19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from chainer import cuda, Function, gradient_check, Variable, optimizers, serializers, utils
from chainer import Link, Chain, ChainList
import chainer.links as L
import chainer.functions as F
from lib.utils import *
from lib.functions import *
import time
class Darknet19(Chain):
"""
Darknet19
- It takes (224, 224, 3) or (448, 448, 4) sized image as input
"""
def __init__(self):
super(Darknet19, self).__init__(
##### common layers for both pretrained layers and yolov2 #####
conv1 = L.Convolution2D(3, 32, ksize=3, stride=1, pad=1, nobias=True),
bn1 = L.BatchNormalization(32, use_beta=False),
bias1 = L.Bias(shape=(32,)),
conv2 = L.Convolution2D(32, 64, ksize=3, stride=1, pad=1, nobias=True),
bn2 = L.BatchNormalization(64, use_beta=False),
bias2 = L.Bias(shape=(64,)),
conv3 = L.Convolution2D(64, 128, ksize=3, stride=1, pad=1, nobias=True),
bn3 = L.BatchNormalization(128, use_beta=False),
bias3 = L.Bias(shape=(128,)),
conv4 = L.Convolution2D(128, 64, ksize=1, stride=1, pad=0, nobias=True),
bn4 = L.BatchNormalization(64, use_beta=False),
bias4 = L.Bias(shape=(64,)),
conv5 = L.Convolution2D(64, 128, ksize=3, stride=1, pad=1, nobias=True),
bn5 = L.BatchNormalization(128, use_beta=False),
bias5 = L.Bias(shape=(128,)),
conv6 = L.Convolution2D(128, 256, ksize=3, stride=1, pad=1, nobias=True),
bn6 = L.BatchNormalization(256, use_beta=False),
bias6 = L.Bias(shape=(256,)),
conv7 = L.Convolution2D(256, 128, ksize=1, stride=1, pad=0, nobias=True),
bn7 = L.BatchNormalization(128, use_beta=False),
bias7 = L.Bias(shape=(128,)),
conv8 = L.Convolution2D(128, 256, ksize=3, stride=1, pad=1, nobias=True),
bn8 = L.BatchNormalization(256, use_beta=False),
bias8 = L.Bias(shape=(256,)),
conv9 = L.Convolution2D(256, 512, ksize=3, stride=1, pad=1, nobias=True),
bn9 = L.BatchNormalization(512, use_beta=False),
bias9 = L.Bias(shape=(512,)),
conv10 = L.Convolution2D(512, 256, ksize=1, stride=1, pad=0, nobias=True),
bn10 = L.BatchNormalization(256, use_beta=False),
bias10 = L.Bias(shape=(256,)),
conv11 = L.Convolution2D(256, 512, ksize=3, stride=1, pad=1, nobias=True),
bn11 = L.BatchNormalization(512, use_beta=False),
bias11 = L.Bias(shape=(512,)),
conv12 = L.Convolution2D(512, 256, ksize=1, stride=1, pad=0, nobias=True),
bn12 = L.BatchNormalization(256, use_beta=False),
bias12 = L.Bias(shape=(256,)),
conv13 = L.Convolution2D(256, 512, ksize=3, stride=1, pad=1, nobias=True),
bn13 = L.BatchNormalization(512, use_beta=False),
bias13 = L.Bias(shape=(512,)),
conv14 = L.Convolution2D(512, 1024, ksize=3, stride=1, pad=1, nobias=True),
bn14 = L.BatchNormalization(1024, use_beta=False),
bias14 = L.Bias(shape=(1024,)),
conv15 = L.Convolution2D(1024, 512, ksize=1, stride=1, pad=0, nobias=True),
bn15 = L.BatchNormalization(512, use_beta=False),
bias15 = L.Bias(shape=(512,)),
conv16 = L.Convolution2D(512, 1024, ksize=3, stride=1, pad=1, nobias=True),
bn16 = L.BatchNormalization(1024, use_beta=False),
bias16 = L.Bias(shape=(1024,)),
conv17 = L.Convolution2D(1024, 512, ksize=1, stride=1, pad=0, nobias=True),
bn17 = L.BatchNormalization(512, use_beta=False),
bias17 = L.Bias(shape=(512,)),
conv18 = L.Convolution2D(512, 1024, ksize=3, stride=1, pad=1, nobias=True),
bn18 = L.BatchNormalization(1024, use_beta=False),
bias18 = L.Bias(shape=(1024,)),
###### new layer
conv19 = L.Convolution2D(1024, 10, ksize=1, stride=1, pad=0),
)
self.train = False
self.finetune = False
def __call__(self, x):
batch_size = x.data.shape[0]
##### common layer
h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), test=not self.train, finetune=self.finetune)), slope=0.1)
h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), test=not self.train, finetune=self.finetune)), slope=0.1)
###### new layer
h = self.conv19(h)
h = F.average_pooling_2d(h, h.data.shape[-1], stride=1, pad=0)
# reshape
y = F.reshape(h, (batch_size, -1))
return y
class Darknet19Predictor(Chain):
def __init__(self, predictor):
super(Darknet19Predictor, self).__init__(predictor=predictor)
def __call__(self, x, t):
y = self.predictor(x)
if t.ndim == 2: # use squared error when label is one hot label
y = F.softmax(y)
# loss = F.mean_squared_error(y, t)
loss = sum_of_squared_error(y, t)
accuracy = F.accuracy(y, t.data.argmax(axis=1).astype(np.int32))
else: # use softmax cross entropy when label is normal label
loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
return y, loss, accuracy
def predict(self, x):
y = self.predictor(x)
return F.softmax(y)