-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrmldemo.py
58 lines (46 loc) · 2.36 KB
/
rmldemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import sys
import argparse
import os
from keras.models import model_from_json
from rml2018_01 import predict,plot_tSNE
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('model', type=str,
help='无线电信号调制识别的模型:vgg,resnet,cldnn.')
parser.add_argument('testfile', type=str,
help='测试数据文件路径.')
parser.add_argument('-acc', '--accuracy',
help='显示正确率曲线', action='store_true')
group = parser.add_argument_group('comfusion matrix')
group.add_argument('-conf','--confusion_matrix',
help='显示混淆矩阵',action='store_true')
group.add_argument('-snr','--min_snr',
help='混淆矩阵显示的最小信噪比.',type=int,default=-10)
parser.add_argument('-tsne','--intermediate_representation',
help='采用t-SNE绘制网络中间表示层.',action='store_true')
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
if not os.path.exists(args.testfile) :
print('输入的测试文件路径不正确!')
exit(0)
model_config_file = 'models/vgg-like-1024-1m-tap8.wts-58.9p.json'
weight_file = 'weights/good/vgg-like-1024-1m-tap8.wts-58.9p.h5'
if args.model == 'vgg':
model_config_file = 'models/vgg-like-1024-1m-tap8.wts-58.9p.json'
weight_file = 'weights/good/vgg-like-1024-1m-tap8.wts-58.9p.h5'
if args.model == 'resnet':
model_config_file = 'models/res-like-1024-1m-tap8_L6.wts-58.4.json'
weight_file = 'weights/good/res-like-1024-1m-tap8_L6.wts-58.4.h5'
if args.model == 'cldnn':
model_config_file = 'models/cldnn-like-1024-512k-L4-2LSTM-55.9p.wts.json'
weight_file = 'weights/good/cldnn-like-1024-512k-L4-2LSTM-55.9p.wts.h5'
with open(model_config_file,'r') as f:
model = model_from_json(f.read())
model.summary()
print(args.min_snr)
predict(model,weight_file=weight_file,test_filename=args.testfile,dis_acc=args.accuracy,dis_conf=args.confusion_matrix,min_snr=args.min_snr)
if args.intermediate_representation:
testfile = '/media/XYZ_1024_128k.hdf5'
print(testfile)
plot_tSNE(model,weight_file=weight_file,test_filename=testfile)