-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstep7-regMatVsDERs.Rmd
421 lines (316 loc) · 12.2 KB
/
step7-regMatVsDERs.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
---
output:
html_document:
toc: true
toc_float: true
code_folding: hide
theme: spacelab
---
Compare output from regionMatrix() with DERs
============================================
# Setup
## Libraries
```{r 'libraries', dev = 'CairoPNG'}
library('GenomicRanges')
library('DT')
library('knitr')
library('ggplot2')
library('devtools')
opts_chunk$set(dev = 'CairoPNG')
```
## Load data
```{r 'data', bootstrap.show.output = FALSE}
## Check that data was loaded
stopifnot(all(c('fullRegions', 'regionMat', 'analysisPath') %in% ls()))
## Fix DERs
ders <- fullRegions
names(ders) <- NULL
## Fix region matrices
regs <- unlist(GRangesList(lapply(regionMat, '[[', 'regions')))
names(regs) <- NULL
## Assign seqlengths
data(hg19Ideogram, package = 'biovizBase', envir = environment())
seqlengths(ders) <- seqlengths(hg19Ideogram)[names(seqlengths(ders))]
seqlengths(regs) <- seqlengths(hg19Ideogram)[names(seqlengths(regs))]
## Sort
ders <- sort(ders)
regs <- sort(regs)
## Check names match
identical(seqlengths(regs), seqlengths(ders))
## Save the raw data
save(ders, file = file.path(analysisPath, 'dersOriginal.Rdata'))
save(regs, file = file.path(analysisPath, 'regsOriginal.Rdata'))
## Filter out those with less than 3bp
c('# ders under 3bp' = sum(width(ders) < 3), '# regs under 3bp' = sum(width(regs) < 3))
ders <- ders[width(ders) >= 3]
regs <- regs[width(regs) >= 3]
## Save data used
save(ders, file = file.path(analysisPath, 'ders.Rdata'))
save(regs, file = file.path(analysisPath, 'regs.Rdata'))
```
Construct logical indexes for DERs and regionMatrix regions.
```{r 'buildIndex'}
## Construct logical Rle indexes for bases with some region
build_index <- function(gr) {
res <- lapply(names(seqlengths(gr)), function(chr) {
chr.len <- seqlengths(gr)[chr]
ir <- sort(ranges(gr[seqnames(gr) == chr]))
log <- c(rep(c(FALSE, TRUE), length(ir)), FALSE)
starts <- ends <- rep(NA, length(ir) * 2)
i <- rep(c(TRUE, FALSE), length(ir))
starts[i] <- start(ir)
ends[i] <- end(ir)
starts[!i] <- ends[i] + 1
if(max(ends, na.rm = TRUE) < chr.len) {
ends[!i] <- c(starts[i] - 1, chr.len)[-1]
} else {
ends[!i] <- c(starts[i] - 1, NULL)[-1]
starts <- starts[- length(starts)]
log <- log[- length(log)]
}
if(starts[1] != 1) {
ends <- c(starts[1] - 1, ends)
starts <- c(1, starts)
} else {
log <- log[-1]
}
widths <- mapply(function(s, e) { e - s + 1}, starts, ends)
Rle(log, widths)
})
names(res) <- names(seqlengths(gr))
return(res)
}
index.ders <- build_index(ders)
index.regs <- build_index(regs)
## Add info for chrs where there are no regs
miss <- !paste0('chr', c(1:22, 'X', 'Y')) %in% names(index.regs)
names(miss) <- paste0('chr', c(1:22, 'X', 'Y'))
if(any(miss)) {
miss.add <- lapply(names(miss)[miss], function(x) {
Rle(FALSE, seqlengths(hg19Ideogram)[x])
})
names(miss.add) <- names(miss)[miss]
index.regs <- c(index.regs, miss.add)
index.regs <- index.regs[match(names(miss), names(index.regs))]
}
## Add info for chrs where there are no DERs
miss <- !names(index.regs) %in% names(index.ders)
if(any(miss)) {
miss.add <- lapply(names(index.regs)[miss], function(x) {
Rle(FALSE, length(index.regs[[x]]))
})
names(miss.add) <- names(index.regs)[miss]
index.ders <- c(index.ders, miss.add)
index.ders <- index.ders[match(names(index.regs), names(index.ders))]
}
```
# Compare
## Visually explore
```{r 'epivizr', eval = FALSE}
library('epivizr')
mgr <- startEpiviz()
ders_dev <- mgr$addDevice(ders[!as.logical(ders$significantFWER)], "DERs no sig FWER")
ders_sig_dev <- mgr$addDevice(ders[as.logical(ders$significantFWER)], "DERs sig FWER")
regs_dev <- mgr$addDevice(regs, "Region Matrix")
## SOX11
mgr$navigate("chr2", 5810000, 5850000)
## MEX3A
mgr$navigate("chr1", 156040000, 156090000)
## VASH2
mgr$navigate("chr1", 213120000, 213170000)
## TG:
mgr$navigate("chr8", 134040000, 134120000)
## IGF2BP2
mgr$navigate("chr3", 185350000, 185410000)
## FBN3
mgr$navigate("chr19", 8130000, 8180000)
## End
mgr$stopServer()
```
## Basic comparison
Number of regions
```{r 'basic1'}
## Number of regions
c('ders' = length(ders), 'regs' = length(regs))
```
Summary on width of regions
```{r 'basic2'}
## Size of regions
c('ders' = summary(width(ders)), 'regs' = summary(width(regs)))
```
## Compare indexes
### Base-pairs
Number of base-pairs in each index. Summary first, then overall info for the genome (in number of bases, then in percent of the genome), and finally results in interactive table.
```{r 'index-num'}
## Merge all the indexes
index.all <- mapply(function(der, reg) {
both <- der & reg
only.der <- der & !reg
only.reg <- !der & reg
none <- !der & !reg
res <- list('both' = both, 'only.der' = only.der, 'only.reg' = only.reg,
'none' = none, 'all.der' = der, 'all.reg' = reg)
return(list(res))
}, index.ders, index.regs)
## Find number of base-pairs in each index
index.num <- data.frame(do.call(rbind, lapply(index.all, function(x) { sapply(x, sum)})))
index.num$chrLen <- seqlengths(ders)
index.num$chr <- rownames(index.num)
rownames(index.num) <- NULL
## Print info
summary(index.num)
## Overall info
overallInfo <- colSums(index.num[, -ncol(index.num)])
overallInfo
## Overall info in percent
overallInfo / sum(as.numeric(index.num$chrLen)) * 100
```
```{r 'print-index-num', results = 'asis'}
d1 <- data.frame(row = seq_len(nrow(index.num)), index.num, check.names=FALSE)
datatable(d1, options = list(pagingType='full_numbers', pageLength=25, scrollX='100%'), rownames = FALSE)
```
### Segments per index
Number of segments per index. First summary, then results for genome, and finally an interactive table.
```{r 'index-seg'}
## Find number of segments in each index
index.seg <- data.frame(do.call(rbind, lapply(index.all, function(x) {
sapply(x, function(y) {
sum(runValue(y))
})
})))
index.seg$chr <- rownames(index.seg)
rownames(index.seg) <- NULL
## Print info
summary(index.seg)
## Overall info
colSums(index.seg[, -ncol(index.seg)])
```
```{r 'print-index-seg', results = 'asis'}
d2 <- data.frame(row = seq_len(nrow(index.seg)), index.seg, check.names=FALSE)
datatable(d2, options = list(pagingType='full_numbers', pageLength=25, scrollX='100%'), rownames = FALSE)
```
### Segments width
Summary of the segment widths for each index. First the overall summary, then the results for each index.
```{r 'index-width'}
## Get an idea of the width of the segments in each index
index.width <- data.frame(do.call(rbind, lapply(index.all, function(x) {
tmp <- data.frame(do.call(rbind, lapply(x, function(y) {
summary(runLength(y)[runValue(y)])
})), check.names = FALSE)
tmp$index <- names(x)
rownames(tmp) <- NULL
return(tmp)
})), check.names = FALSE)
index.width$chr <- rep(names(seqlengths(ders)), each = 6)
rownames(index.width) <- NULL
## Print info
summary(index.width)
```
```{r 'print-index-width', results = 'asis'}
d3 <- data.frame(row = seq_len(nrow(index.width)), index.width, check.names=FALSE)
datatable(d3, options = list(pagingType='full_numbers', pageLength=25, scrollX='100%'), rownames = FALSE)
```
## Overlaps
### Minimum 20 bp
```{r 'overlaps20'}
ov20 <- findOverlaps(ders, regs, minoverlap = 20L)
counts <- list()
for(type in c("any", "within", "equal")) {
ct.ders <- countOverlaps(ders, regs, minoverlap = 20L, type = type)
plot(log10(table(ct.ders)), main = paste("DERs in regs for type", type))
ct.regs <- countOverlaps(regs, ders, minoverlap = 20L, type = type)
plot(log10(table(ct.regs)), main = paste("Regs in DERs for type", type))
counts <- c(counts, list(table(ct.ders), table(ct.regs)))
}
cts <- as.integer(unique(unlist(lapply(counts, names))))
nOverlap20 <- do.call(rbind, lapply(counts, function(x) {
df <- data.frame(nOverlap = cts, freq = x[match(cts, names(x))],
row.names = seq_len(length(cts)))
df$observed <- !is.na(df$freq)
df$freq[is.na(df$freq)] <- 0
df$cumFreq <- cumsum(df$freq)
df$cumPerc <- df$cumFreq / max(df$cumFreq) * 100
return(df)
}))
nOverlap20$type <- factor(rep(c('any', 'within', 'equal'), each = length(cts) * 2), levels = c('any', 'within', 'equal'))
nOverlap20$match <- rep(rep(c('DERs-in-regs', 'regs-in-DERs'), each = length(cts)), 3)
#nOverlap <- nOverlap[complete.cases(nOverlap), ]
rownames(nOverlap20) <- NULL
nOverlap20$alpha <- ifelse(nOverlap20$observed, 1, 1/3)
```
Summary plots showing cumulative frequency and cumulative percent.
```{r 'gplot20'}
## Make a nice plot
ggplot(data = nOverlap20, aes(x = nOverlap, y = cumFreq, colour = match, alpha = alpha)) + geom_point() + facet_grid( . ~ type )# + geom_smooth(se=FALSE)
## Show cumulative percents
ggplot(data = nOverlap20, aes(x = nOverlap, y = cumPerc, colour = match, linetype = match)) + geom_line(lwd=1) + facet_grid( . ~ type )
```
Some important numbers: percent of regions with width < 20 bp, base level agreement, region level agreement (min overlap 20 bp).
```{r}
## Percent with widths < 20L
small <- c('ders' = sum(width(ders) < 20) / length(ders), 'regs' = sum(width(regs) < 20) / length(regs)) * 100
data.frame('under-20' = small, '20-and-above' = 100 - small, check.names = FALSE)
## Base-level agreement
c('regs' = overallInfo['both'] / (overallInfo['both'] + overallInfo['only.reg']) * 100, 'ders' = overallInfo['both'] / (overallInfo['both'] + overallInfo['only.der']) * 100)
## Overlap (min 20) agreement
c('regs' = 100 - subset(nOverlap20, match == 'regs-in-DERs' & nOverlap == 0 & type == 'any')$cumPerc, 'ders' = 100 - subset(nOverlap20, match == 'DERs-in-regs' & nOverlap == 0 & type == 'any')$cumPerc)
```
### Minimum 1 bp
```{r 'overlaps1'}
ov1 <- findOverlaps(ders, regs, minoverlap = 1L)
counts <- list()
for(type in c("any", "within", "equal")) {
ct.ders <- countOverlaps(ders, regs, minoverlap = 1L, type = type)
plot(log10(table(ct.ders)), main = paste("DERs in regs for type", type))
ct.regs <- countOverlaps(regs, ders, minoverlap = 1L, type = type)
plot(log10(table(ct.regs)), main = paste("Regs in DERs for type", type))
counts <- c(counts, list(table(ct.ders), table(ct.regs)))
}
cts <- as.integer(unique(unlist(lapply(counts, names))))
nOverlap1 <- do.call(rbind, lapply(counts, function(x) {
df <- data.frame(nOverlap = cts, freq = x[match(cts, names(x))],
row.names = seq_len(length(cts)))
df$observed <- !is.na(df$freq)
df$freq[is.na(df$freq)] <- 0
df$cumFreq <- cumsum(df$freq)
df$cumPerc <- df$cumFreq / max(df$cumFreq) * 100
return(df)
}))
nOverlap1$type <- factor(rep(c('any', 'within', 'equal'), each = length(cts) * 2), levels = c('any', 'within', 'equal'))
nOverlap1$match <- rep(rep(c('DERs-in-regs', 'regs-in-DERs'), each = length(cts)), 3)
#nOverlap <- nOverlap[complete.cases(nOverlap), ]
rownames(nOverlap1) <- NULL
nOverlap1$alpha <- ifelse(nOverlap1$observed, 1, 1/3)
## Overlap (min 1bp) agreement
c('regs' = 100 - subset(nOverlap1, match == 'regs-in-DERs' & nOverlap == 0 & type == 'any')$cumPerc, 'ders' = 100 - subset(nOverlap1, match == 'DERs-in-regs' & nOverlap == 0 & type == 'any')$cumPerc)
```
Summary plots showing cumulative frequency and cumulative percent.
```{r 'gplot1'}
## Make a nice plot
ggplot(data = nOverlap1, aes(x = nOverlap, y = cumFreq, colour = match, alpha = alpha)) + geom_point() + facet_grid( . ~ type )# + geom_smooth(se=FALSE)
## Show cumulative percents
ggplot(data = nOverlap1, aes(x = nOverlap, y = cumPerc, colour = match, linetype = match)) + geom_line(lwd=1) + facet_grid( . ~ type )
```
# Save results
```{r 'save'}
save(index.all, index.num, index.seg, index.width, nOverlap20, ov20, nOverlap1, ov1, overallInfo, file = file.path(analysisPath, "comparison-results.Rdata"))
```
# Reproducibility
Analysis path: `r analysisPath`
Re-make the report
```{r 'remake', eval = FALSE}
# Load fullRegions.Rdata and regionMat.Rdata before this step
library('rmarkdown')
render('step7-regMatVsDERs.Rmd')
```
Date the report was generated.
```{r reproducibility1, echo=FALSE}
## Date the report was generated
Sys.time()
```
`R` session information.
```{r reproducibility3, echo=FALSE}
## Session info
options(width = 120)
session_info()
```