-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNairit.cc
221 lines (170 loc) · 7.36 KB
/
Nairit.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//================ Decay Momentum ====================
// Momentum in 2-particle decay : m0->m1+m2
double RooMyPdf::sq_calc(double x,double y, double z) const
{
return pow(x,2)+pow(y,2)+pow(z,2)-2.0*x*y-2.0*x*z+2.0*y*z;
}
double RooMyPdf::dec2mm (double m0, double m1, double m2) const
{
double temp = sq_calc(m0*m0,m1*m1,m2*m2);
return sqrt(temp)/(2.0*m0);
}
//================ Decay Momentum ====================
//================ Blatt-Weisskopf Form Factors ======
// l = spin
// q = momentum from "dec2mm"
// q0 = momentum from "dec2mm" with PDG mass
// r = meson radial parameter (hadron scale)
double RooMyPdf::bwff(int l, double q, double q0, double r) const
{
double z = r*r*q*q;
double z0 = r*r*q0*q0;
double f;
//########### spin 0 ###############
if (l == 0) {
f = 0;
}
//########### spin 1 ###############
if (l == 1) {
f = sqrt((1+z0)/(1+z));
}
//########### spin 2 ###############
if (l == 2) {
f = sqrt((z0*z0+3.0*z0+9.0)/(z*z+3.0*z+9.0));
}
//########### spin 3 ###############
if (l == 3) {
f = sqrt((z0*z0*z0+6.0*z0*z0+45.0*z0+225.0)/(z*z*z+6.0*z*z+45.0*z+225.0));
}
return f;
}
//================ Blatt-Weisskopf Form Factors ======
//================ Breit-Wigner Amplitude ============
// m0 = resonance mass (pdg)
// w0 = width (pdg)
// m = invariant mass of two daughters of the resonance
// m_d1, m_d2 = daughter masses
// l = relative angular momentum
// f = BW form factor
// q = momentum from "dec2mm"
// q0 = momentum from "dec2mm" with PDG mass
complex<double> RooMyPdf::bwamp(double m0,double w0,double m,double m_d1,double m_d2,int l,double f,double q0,double q) const
{
double width = w0*pow((q/q0),2*l+1)*(m0/m)*f*f;
double deno = (m0*m0 - m*m)*(m0*m0 - m*m) + m0*m0*width*width;
double rl = f*pow((q/m),l)*(m0*m0 - m*m)/deno;
double imag = f*pow((q/m),l)*m0*width/deno;
complex<double> val(rl,imag);
return val;
}
//================ Jacobi Polynomial =================
//Jacobi polynomial - order n
double RooMyPdf::jacobi_Pn (int n, double a, double b, double x) const
{
if (n==0){
return 1.0;
}
else if (n==1){
return 0.5 * (a - b + (a + b + 2.0)*x);
}
else {
double p0, p1, a1, a2, a3, a4, p2=0.0;
int i;
p0 = 1.0;
p1 = 0.5 * (a - b + (a + b + 2)*x);
for(i=1; i<n; ++i){
a1 = 2.0*(i+1.0)*(i+a+b+1.0)*(2.0*i+a+b);
a2 = (2.0*i+a+b+1.0)*(a*a-b*b);
a3 = (2.0*i+a+b)*(2.0*i+a+b+1.0)*(2.0*i+a+b+2.0);
a4 = 2.0*(i+a)*(i+b)*(2.0*i+a+b+2.0);
p2 = 1.0/a1*( (a2 + a3*x)*p1 - a4*p0);
p0 = p1;
p1 = p2;
}
return p2;
}
}
//================ Jacobi Polynomial =================
//================ factorial =========================
int RooMyPdf::Factorial(int x) const
{
if (x==0) { return 1; }
return (x == 1 ? x : x * Factorial(x - 1));
}
//================ factorial =========================
//================ combination =======================
int RooMyPdf::Combination(int n, int r) const
{
return (Factorial(n)) / ((Factorial(n-r)) * Factorial(r));
}
//================ combination =======================
//================ wigner d calculations =============
double RooMyPdf::wigner_d (int j, int m1, int m2, double theta ) const
{
int array[] = {j+m1, j-m1, j+m2, j-m2};
int k = *min_element(array,array+4) ;
int a = abs(m1-m2);//fabs?
double lambda; //int - not working due to pow overload resolution
if (k == j+m1) { lambda = 0;}
else if (k == j-m1) { lambda = m1-m2;}
else if (k == j+m2) { lambda = m1-m2;}
else if (k == j-m2) { lambda = 0;}
int b = 2*j-2*k-a;
double value = pow(-1,lambda) * pow(Combination(2*j-k,k+a),0.5) * pow(Combination(k+b,b),-0.5) * pow(sin(0.5*theta),a) * pow(cos(0.5*theta),b) * jacobi_Pn(k,a,b,cos(theta));
return value;
}
//================ wigner d calculations =============
//================ Signal Density Calculation ========
//pB = B0 3-momentum
double RooMyPdf::get_signal_density (double mBcalc, double mKPicalc, double mJpsicalc, double pB, double theta_k, double phi, double theta_jpsi ) const
{ // signal density begin
double qB = pB/mB;
double qB2 = qB*qB;
double qB3 = qB2*qB;
double qB4 = qB3*qB;
double qB5 = qB4*qB;
double q = dec2mm(mBcalc,mKPicalc,mJpsicalc); //dec2mm(mB,mKPi,mJpsi)
//================ Amplitudes for the different K resonances===========
// mKPi = K-Pi inv mass calculated from data
double qK = dec2mm(mKPicalc,mK,mPi);
//############## K*(892) ###################
double qK892 = dec2mm(mK892,mK,mPi);
double fK892 = bwff(1,qK,qK892,rR);
complex<double> a_K_892 = bwamp(mK892,wK892,mKPicalc,mK,mPi,1,fK892,qK892,qK);
//############## K0*(1430) ###################
double q0_1430 = dec2mm(mB,mK0_1430,mJpsi);
double qK0_1430 = dec2mm(mK0_1430,mK,mPi);
double fK0_1430 = bwff(1,qK,qK0_1430,rR);
complex<double> a_K0_1430 = bwamp(mK0_1430,wK0_1430,mKPicalc,mK,mPi,1,fK0_1430,qK0_1430,qK);
a_K0_1430 = a_K0_1430 * qB * bwff(1,q,q0_1430,rB);
//############## K2*(1430) ###################
double q2_1430 = dec2mm(mB,mK2_1430,mJpsi);
double qK2_1430 = dec2mm(mK2_1430,mK,mPi);
double fK2_1430 = bwff(1,qK,qK2_1430,rR);
complex<double> a_K2_1430 = bwamp(mK2_1430,wK2_1430,mKPicalc,mK,mPi,1,fK2_1430,qK2_1430,qK);
a_K2_1430 = a_K2_1430 * qB * bwff(1,q,q2_1430,rB);
//******************** lepton pair helicity minus 1**************
complex<double> index_minus1_m1(0.0,-1*phi);
complex<double> a_K_892_minus1_m1 = a_K_892*wigner_d(1,-1,0,theta_k)*exp(index_minus1_m1)*wigner_d(1,-1,-1,theta_jpsi);
complex<double> index_zero_m1(0.0,0.0);
complex<double> a_K_892_zero_m1 = a_K_892*wigner_d(1,0,0,theta_k)*exp(index_zero_m1)*wigner_d(1,0,-1,theta_jpsi);
complex<double> index_plus1_m1(0.0,phi);
complex<double> a_K_892_plus1_m1 = a_K_892*wigner_d(1,1,0,theta_k)*exp(index_plus1_m1)*wigner_d(1,1,-1,theta_jpsi);
//******************** lepton pair helicity plus 1**************
complex<double> index_minus1_p1(0.0,-1*phi);
complex<double> a_K_892_minus1_p1 = a_K_892*wigner_d(1,-1,0,theta_k)*exp(index_minus1_p1)*wigner_d(1,-1,1,theta_jpsi);
complex<double> index_zero_p1(0.0,0.0);
complex<double> a_K_892_zero_p1 = a_K_892*wigner_d(1,0,0,theta_k)*exp(index_zero_p1)*wigner_d(1,0,1,theta_jpsi);
complex<double> index_plus1_p1(0.0,phi);
complex<double> a_K_892_plus1_p1 = a_K_892*wigner_d(1,1,0,theta_k)*exp(index_plus1_p1)*wigner_d(1,1,1,theta_jpsi);
//******************* helicity phase ***************************
double val = pow(abs(a_K_892_minus1_m1 //* exp(helphase_index_K_892_minus1)
+a_K_892_zero_m1 //* exp(helphase_index_K_892_zero)
+a_K_892_plus1_m1 //* exp(helphase_index_K_892_plus1)
+a_K_892_minus1_p1 //* exp(helphase_index_K_892_minus1)
+a_K_892_zero_p1 //* exp(helphase_index_K_892_zero)
+a_K_892_plus1_p1 ),2); //* exp(helphase_index_K_892_plus1)),2);
return val ;
//================ Amplitudes for the different K resonances===========
}// signal density end
//================ Signal Density Calculation ========