-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_sota.py
227 lines (180 loc) · 10.5 KB
/
eval_sota.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import argparse
import re
import yaml
import numpy as np
import pandas as pd
import xarray as xr
import cfgrib
from collections import defaultdict as dd
from datetime import datetime
import gc
from pathlib import Path
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader, TensorDataset
import lightning.pytorch as pl
from lightning.pytorch import loggers as pl_loggers
from lightning.pytorch.callbacks import ModelCheckpoint
pl.seed_everything(42)
import sys
sys.path.append('..')
import warnings
warnings.filterwarnings('ignore')
from chaosbench import dataset, config, utils, criterion
from chaosbench.models import model
def main(args):
"""
Evaluation script to assess data-driven models
See `scripts/process_sota.py` on how to run forecasts on these models, including pangu, fcn2, graphcast
Example usage:
(Panguweather) 1) `python eval_sota.py --model_name panguweather --eval_years 2022`
(Graphcast) 2) `python eval_sota.py --model_name graphcast --eval_years 2022`
(FourcastNetV2) 3) `python eval_sota.py --model_name fourcastnetv2 --eval_years 2022`
"""
assert args.model_name in ['panguweather', 'fourcastnetv2', 'graphcast']
print(f'Evaluating reanalysis against {args.model_name}...')
#########################################
####### Evaluation initialization #######
#########################################
## Prepare directory to load model
log_dir = Path('logs') / args.model_name
ALL_PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': config.LRA5_PARAMS, 'oras5': config.ORAS5_PARAMS}
PARAM_LIST = {'era5': [], 'lra5': [], 'oras5': []}
## Get prediction
input_dataset = sorted([
f for year in args.eval_years
for f in (config.DATA_DIR / args.model_name).glob(f'*{year}*.zarr')
if re.match(rf'.*{year}\d{{4}}\.zarr$', f.name)
])
## Get target
target_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
####################### Initialize criteria #######################
RMSE = criterion.RMSE()
Bias = criterion.Bias()
ACC = criterion.ACC()
SSIM = criterion.MS_SSIM()
SpecDiv = criterion.SpectralDiv(percentile=0.9, is_train=False)
SpecRes = criterion.SpectralRes(percentile=0.9, is_train=False)
##################################################################
######################################
####### Evaluation main script #######
######################################
## All metric placeholders
all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres = list(), list(), list(), list(), list(), list()
for input_d in tqdm(input_dataset):
preds_dataset = xr.open_dataset(input_d, engine='zarr')
PARAM_LIST['era5'] = list(preds_dataset.data_vars)
# Pre-processing (e.g., get day-of-years for climatology-related metrics...)
doy = int(pd.to_datetime(str(preds_dataset.time.values)).dayofyear)
if doy <= len(target_dataset):
timestamps, truth_x, truth_y = target_dataset[doy - 1]
doys = utils.get_doys_from_timestep(torch.tensor([timestamps])) ## Batch-level DOYs
## Step metric placeholders
step_rmse, step_bias, step_acc, step_ssim, step_sdiv, step_sres = dict(), dict(), dict(), dict(), dict(), dict()
for step_idx in range(truth_y.size(0)):
param_idx = 0
############## Getting current-step preds/targs ##############
preds = preds_dataset.isel(step=step_idx)
targs = truth_y[step_idx]
##############################################################
## Compute metric for each parameter
for i, (param_class, params) in enumerate(ALL_PARAM_LIST.items()):
for j, param in enumerate(params):
### Some param/level pairs are not available
param_exist = param in PARAM_LIST[param_class]
## Handling predictions
unique_preds = torch.tensor(preds[param].values) if param_exist else torch.full((121,240), torch.nan)
unique_preds = unique_preds.double().unsqueeze(0).to(config.device)
## Handling labels (land/ocean masking)
unique_labels = targs[param_idx] if param_class == 'era5' else torch.where(targs[param_idx] == 0.0, torch.nan, targs[param_idx])
unique_labels = unique_labels.double().unsqueeze(0).to(config.device)
################################## Criterion 1: RMSE #####################################
error = RMSE(unique_preds, unique_labels).cpu().numpy()
################################## Criterion 2: Bias #####################################
bias = Bias(unique_preds, unique_labels).cpu().numpy()
################################## Criterion 3: ACC ######################################
acc = ACC(unique_preds, unique_labels, doys[:, step_idx], param, param_class).cpu().numpy()
################################## Criterion 4: SSIM ######################################
ssim = SSIM(unique_preds, unique_labels).cpu().numpy()
################################ Criterion 5: SpecDiv #####################################
sdiv = SpecDiv(unique_preds, unique_labels).cpu().numpy()
################################ Criterion 6: SpecRes #####################################
sres = SpecRes(unique_preds, unique_labels).cpu().numpy()
try:
step_rmse[param].extend([error])
step_bias[param].extend([bias])
step_acc[param].extend([acc])
step_ssim[param].extend([ssim])
step_sdiv[param].extend([sdiv])
step_sres[param].extend([sres])
except:
step_rmse[param] = [error]
step_bias[param] = [bias]
step_acc[param] = [acc]
step_ssim[param] = [ssim]
step_sdiv[param] = [sdiv]
step_sres[param] = [sres]
param_idx += 1
all_rmse.append(step_rmse)
all_bias.append(step_bias)
all_acc.append(step_acc)
all_ssim.append(step_ssim)
all_sdiv.append(step_sdiv)
all_sres.append(step_sres)
## Combine metrics across batch
merged_rmse, merged_bias, merged_acc, \
merged_ssim, merged_sdiv, merged_sres = dd(list), dd(list), dd(list), dd(list), dd(list), dd(list)
for d_rmse, d_bias, d_acc, d_ssim, d_sdiv, d_sres in zip(all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres):
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), \
(ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v) in zip(d_rmse.items(),
d_bias.items(),
d_acc.items(),
d_ssim.items(),
d_sdiv.items(),
d_sres.items()):
merged_rmse[rmse_k].append(rmse_v)
merged_bias[bias_k].append(bias_v)
merged_acc[acc_k].append(acc_v)
merged_ssim[ssim_k].append(ssim_v)
merged_sdiv[sdiv_k].append(sdiv_v)
merged_sres[sres_k].append(sres_v)
## Compute the mean metrics over valid evaluation time horizon (for each timestep) along batch
merged_rmse, \
merged_bias, \
merged_acc, \
merged_ssim, \
merged_sdiv, \
merged_sres = dict(merged_rmse), dict(merged_bias), dict(merged_acc), dict(merged_ssim), dict(merged_sdiv), dict(merged_sres)
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), \
(ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v) in zip(merged_rmse.items(),
merged_bias.items(),
merged_acc.items(),
merged_ssim.items(),
merged_sdiv.items(),
merged_sres.items()):
merged_rmse[rmse_k] = np.array(merged_rmse[rmse_k]).mean(axis=0)
merged_bias[bias_k] = np.array(merged_bias[bias_k]).mean(axis=0)
merged_acc[acc_k] = np.array(merged_acc[acc_k]).mean(axis=0)
merged_ssim[ssim_k] = np.array(merged_ssim[ssim_k]).mean(axis=0)
merged_sdiv[sdiv_k] = np.array(merged_sdiv[sdiv_k]).mean(axis=0)
merged_sres[sres_k] = np.array(merged_sres[sres_k]).mean(axis=0)
## Save metrics
eval_dir = log_dir / 'eval'
eval_dir.mkdir(parents=True, exist_ok=True)
pd.DataFrame(merged_rmse).to_csv(eval_dir / f'rmse_{args.model_name}.csv', index=False)
pd.DataFrame(merged_bias).to_csv(eval_dir / f'bias_{args.model_name}.csv', index=False)
pd.DataFrame(merged_acc).to_csv(eval_dir / f'acc_{args.model_name}.csv', index=False)
pd.DataFrame(merged_ssim).to_csv(eval_dir / f'ssim_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sdiv).to_csv(eval_dir / f'sdiv_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sres).to_csv(eval_dir / f'sres_{args.model_name}.csv', index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', help='Name of the model specified in your config file, including one of [fourcastnet, fourcastnetv2, panguweather, graphcast]')
parser.add_argument('--eval_years', nargs='+', help='Provide the evaluation years')
args = parser.parse_args()
main(args)