-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_ensemble.py
363 lines (290 loc) · 19.3 KB
/
eval_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import copy
import logging
import argparse
import yaml
import numpy as np
import pandas as pd
import xarray as xr
from collections import defaultdict as dd
import gc
from pathlib import Path
from tqdm import tqdm
import re
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader, TensorDataset
import lightning.pytorch as pl
from lightning.pytorch import loggers as pl_loggers
from lightning.pytorch.callbacks import ModelCheckpoint
pl.seed_everything(42)
import sys
sys.path.append('..')
import warnings
warnings.filterwarnings('ignore')
from chaosbench import dataset, config, utils, criterion
from chaosbench.models import model
def main(args):
"""
Evaluation script given .yaml config and trained model checkpoint (for iterative scheme) for ensemble forecasts
You can also provide a list from lra5 and oras5 if you want some or all of their parameters predicted,
e.g., python eval_ensemble.py --model_name <model_name> --eval_years <eval_years> --lra5 [...] --oras5 [...]
Example usage:
(Physical models)
1) `python eval_ensemble.py --model_name cma --eval_years 2022`
(Data-driven models: multiple checkpoints ensemble)
2) `python eval_ensemble.py --model_name unet_ensemble_s2s --eval_years 2022 --version_nums 0 1 2 3 4`
"""
print(f'Evaluating reanalysis against {args.model_name}...')
#########################################
####### Evaluation initialization #######
#########################################
IS_NWPS, IS_AI_MODEL = False, False
BATCH_SIZE = 32
ALL_PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': config.LRA5_PARAMS, 'oras5': config.ORAS5_PARAMS}
## Case 1: Physical models, one of [ecmwf, cma, ukmo, ncep]
if args.model_name in list(config.S2S_CENTERS.keys()):
IS_NWPS = True
log_dir = Path('logs') / f'{args.model_name}_ensemble'
PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': args.lra5, 'oras5': args.oras5}
input_dataset = dataset.S2SEvalDataset(s2s_name=args.model_name, years=args.eval_years, is_ensemble=True, is_normalized=False)
input_dataloader = DataLoader(input_dataset, batch_size=BATCH_SIZE, shuffle=False)
output_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
output_dataloader = DataLoader(output_dataset, batch_size=BATCH_SIZE, shuffle=False)
## Case 2: Data-driven models
elif 's2s' in args.model_name:
IS_AI_MODEL = True
log_dir = Path('logs') / f'{args.model_name}'
PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': args.lra5, 'oras5': args.oras5}
## Retrieve hyperparameters
config_filepath = Path(f'chaosbench/configs/{args.model_name}.yaml')
with open(config_filepath, 'r') as config_f:
hyperparams = yaml.load(config_f, Loader=yaml.FullLoader)
model_args = hyperparams['model_args']
data_args = hyperparams['data_args']
## Load model from checkpoint
baselines = []
for version_num in args.version_nums:
baseline = model.S2SBenchmarkModel(model_args=model_args, data_args=data_args)
ckpt_filepath = log_dir / f'lightning_logs/version_{version_num}/checkpoints/'
ckpt_filepath = list(ckpt_filepath.glob('*.ckpt'))[0]
baseline = baseline.load_from_checkpoint(ckpt_filepath)
baselines.append(copy.deepcopy(baseline.eval()))
land_vars = baseline.hparams.get('data_args', {}).get('land_vars', [])
ocean_vars = baseline.hparams.get('data_args', {}).get('ocean_vars', [])
## Prepare input/output dataset
input_dataset = dataset.S2SObsDataset(args.eval_years, config.N_STEPS-1, land_vars=land_vars, ocean_vars=ocean_vars)
input_dataloader = DataLoader(input_dataset, batch_size=BATCH_SIZE, shuffle=False)
output_dataset = dataset.S2SObsDataset(
args.eval_years, config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
output_dataloader = DataLoader(output_dataset, batch_size=BATCH_SIZE, shuffle=False)
else:
raise NotImplementedError('Inference type has yet to be implemented...')
##################### Initialize criteria ######################
####################### Deterministic ##########################
RMSE = criterion.RMSE()
Bias = criterion.Bias()
ACC = criterion.ACC()
SSIM = criterion.MS_SSIM()
SpecDiv = criterion.SpectralDiv(percentile=0.9, is_train=False)
SpecRes = criterion.SpectralRes(percentile=0.9, is_train=False)
####################### Probabilistic ##########################
CRPS = criterion.CRPS()
CRPSS = criterion.CRPSS()
Spread = criterion.Spread()
SSR = criterion.SSR()
################################################################
######################################
####### Evaluation main script #######
######################################
## All metric placeholders
all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres = list(), list(), list(), list(), list(), list()
all_crps, all_crpss, all_spread, all_ssr = list(), list(), list(), list()
for input_batch, output_batch in tqdm(zip(input_dataloader, output_dataloader), total=len(input_dataloader)):
_, preds_x, preds_y = input_batch
timestamps, truth_x, truth_y = output_batch
# Pre-processing (e.g., get day-of-years for climatology-related metrics...)
doys = utils.get_doys_from_timestep(timestamps)
assert preds_y.size(1) == truth_y.size(1)
N_STEPS = preds_y.size(1)
N_ENSEM = preds_y.size(2) if IS_NWPS else len(baselines)
## Step metric placeholders
step_rmse, step_bias, step_acc, step_ssim, step_sdiv, step_sres = dict(), dict(), dict(), dict(), dict(), dict()
step_crps, step_crpss, step_spread, step_ssr = dict(), dict(), dict(), dict()
for step_idx in range(N_STEPS):
all_param_idx, param_idx = 0, 0
with torch.no_grad():
##################### Getting predictions #####################
if IS_NWPS:
preds = preds_y[:, step_idx]
elif IS_AI_MODEL:
if step_idx == 0:
preds_x = preds_x.unsqueeze(1)
preds_x = preds_x.repeat(1, N_ENSEM, 1, 1, 1)
# Collect preds across members
preds = []
for b_id, baseline in enumerate(baselines):
preds.append(
baseline(preds_x[:,b_id].to(config.device))
)
preds = torch.stack(preds, dim=1)
###############################################################
####################### Getting targets #######################
targs = truth_y[:, step_idx]
targs = targs.unsqueeze(1) # dim=ensemble_num
targs = targs.repeat(1, N_ENSEM, 1, 1, 1)
###############################################################
## Extract metric for each param/level
for i, (param_class, params) in enumerate(ALL_PARAM_LIST.items()):
for j, param in enumerate(params):
### Some param/level pairs are not available
param_exist = param in PARAM_LIST[param_class]
## Handling predictions
unique_preds = preds[:, :, param_idx] if param_exist else torch.full((BATCH_SIZE, N_ENSEM, 121,240), torch.nan)
unique_preds = utils.denormalize(unique_preds, param, param_class) if IS_AI_MODEL else unique_preds
unique_preds = unique_preds.double().to(config.device)
## Handling labels
unique_labels = targs[:, :, all_param_idx]
unique_labels = unique_labels.double().to(config.device)
########################################### Criterion 1: RMSE ##############################################
error = RMSE(unique_preds.mean(axis=1), unique_labels.mean(axis=1)).cpu().numpy()
######################################## Criterion 2: Bias #################################################
bias = Bias(unique_preds.mean(axis=1), unique_labels.mean(axis=1)).cpu().numpy()
######################################## Criterion 3: ACC ##################################################
acc = ACC(unique_preds.mean(axis=1), unique_labels.mean(axis=1), doys[:,step_idx], param, param_class)
acc = acc.cpu().numpy()
######################################## Criterion 4: SSIM #################################################
ssim = SSIM(unique_preds.mean(axis=1), unique_labels.mean(axis=1)).cpu().numpy()
###################################### Criterion 5: SpecDiv ################################################
sdiv = SpecDiv(unique_preds.mean(axis=1), unique_labels.mean(axis=1)).cpu().numpy()
###################################### Criterion 6: SpecRes ################################################
sres = SpecRes(unique_preds.mean(axis=1), unique_labels.mean(axis=1)).cpu().numpy()
######################################## Criterion 7a: CRPS ################################################
crps = CRPS(unique_preds, unique_labels.mean(axis=1)).cpu().numpy()
########################################## Criterion 7b: CRPSS #############################################
crpss = CRPSS(unique_preds, unique_labels.mean(axis=1), doys[:,step_idx], param, param_class).cpu().numpy()
####################################### Criterion 8: Spread ################################################
spread = Spread(unique_preds, unique_labels.mean(axis=1)).cpu().numpy()
######################################## Criterion 9: SSR ##################################################
ssr = SSR(unique_preds, unique_labels.mean(axis=1)).cpu().numpy()
try:
step_rmse[param].extend([error])
step_bias[param].extend([bias])
step_acc[param].extend([acc])
step_ssim[param].extend([ssim])
step_sdiv[param].extend([sdiv])
step_sres[param].extend([sres])
step_crps[param].extend([crps])
step_crpss[param].extend([crpss])
step_spread[param].extend([spread])
step_ssr[param].extend([ssr])
except:
step_rmse[param] = [error]
step_bias[param] = [bias]
step_acc[param] = [acc]
step_ssim[param] = [ssim]
step_sdiv[param] = [sdiv]
step_sres[param] = [sres]
step_crps[param] = [crps]
step_crpss[param] = [crpss]
step_spread[param] = [spread]
step_ssr[param] = [ssr]
all_param_idx += 1
param_idx = param_idx + 1 if param_exist else param_idx
## Make next-step input as the current prediction (used for AI models)
preds_x = preds
## (1) Cleaning up to release memory at each time_step
targs, preds = targs.cpu().detach(), preds.cpu().detach()
del targs, preds
## (2) Cleaning up to release memory at each batch
preds_x, preds_y = preds_x.cpu().detach(), preds_y.cpu().detach()
truth_x, truth_y = truth_x.cpu().detach(), truth_y.cpu().detach()
del preds_x, preds_y, truth_x, truth_y
gc.collect()
all_rmse.append(step_rmse)
all_bias.append(step_bias)
all_acc.append(step_acc)
all_ssim.append(step_ssim)
all_sdiv.append(step_sdiv)
all_sres.append(step_sres)
all_crps.append(step_crps)
all_crpss.append(step_crpss)
all_spread.append(step_spread)
all_ssr.append(step_ssr)
## Combine metrics across batch
merged_rmse, merged_bias, merged_acc, merged_ssim, merged_sdiv, merged_sres, \
merged_crps, merged_crpss, merged_spread, merged_ssr = dd(list), dd(list), dd(list), dd(list), dd(list), dd(list), dd(list), dd(list), dd(list), dd(list)
for d_rmse, d_bias, d_acc, d_ssim, d_sdiv, d_sres, \
d_crps, d_crpss, d_spread, d_ssr in zip(all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres, all_crps, all_crpss, all_spread, all_ssr):
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), (ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v), \
(crps_k, crps_v), (crpss_k, crpss_v), (spread_k, spread_v), (ssr_k, ssr_v) in zip(d_rmse.items(),
d_bias.items(),
d_acc.items(),
d_ssim.items(),
d_sdiv.items(),
d_sres.items(),
d_crps.items(),
d_crpss.items(),
d_spread.items(),
d_ssr.items()):
merged_rmse[rmse_k].append(rmse_v)
merged_bias[bias_k].append(bias_v)
merged_acc[acc_k].append(acc_v)
merged_ssim[ssim_k].append(ssim_v)
merged_sdiv[sdiv_k].append(sdiv_v)
merged_sres[sres_k].append(sres_v)
merged_crps[crps_k].append(crps_v)
merged_crpss[crpss_k].append(crpss_v)
merged_spread[spread_k].append(spread_v)
merged_ssr[ssr_k].append(ssr_v)
## Compute the mean metrics over valid evaluation time horizon (for each timestep) along batch
merged_rmse, merged_bias, merged_acc, merged_ssim, merged_sdiv, merged_sres, \
merged_crps, merged_crpss, merged_spread, merged_ssr = dict(merged_rmse), dict(merged_bias), dict(merged_acc), dict(merged_ssim), dict(merged_sdiv), dict(merged_sres), dict(merged_crps), dict(merged_crpss), dict(merged_spread), dict(merged_ssr)
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), (ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v), \
(crps_k, crps_v), (crpss_k, crpss_v), (spread_k, spread_v), (ssr_k, ssr_v) in zip(merged_rmse.items(),
merged_bias.items(),
merged_acc.items(),
merged_ssim.items(),
merged_sdiv.items(),
merged_sres.items(),
merged_crps.items(),
merged_crpss.items(),
merged_spread.items(),
merged_ssr.items()):
merged_rmse[rmse_k] = np.array(merged_rmse[rmse_k]).mean(axis=0)
merged_bias[bias_k] = np.array(merged_bias[bias_k]).mean(axis=0)
merged_acc[acc_k] = np.array(merged_acc[acc_k]).mean(axis=0)
merged_ssim[ssim_k] = np.array(merged_ssim[ssim_k]).mean(axis=0)
merged_sdiv[sdiv_k] = np.array(merged_sdiv[sdiv_k]).mean(axis=0)
merged_sres[sres_k] = np.array(merged_sres[sres_k]).mean(axis=0)
merged_crps[crps_k] = np.array(merged_crps[crps_k]).mean(axis=0)
merged_crpss[crpss_k] = np.array(merged_crpss[crpss_k]).mean(axis=0)
merged_spread[spread_k] = np.array(merged_spread[spread_k]).mean(axis=0)
merged_ssr[ssr_k] = np.array(merged_ssr[ssr_k]).mean(axis=0)
## Save metrics
eval_dir = log_dir / 'eval'
eval_dir.mkdir(parents=True, exist_ok=True)
pd.DataFrame(merged_rmse).to_csv(eval_dir / f'rmse_{args.model_name}.csv', index=False)
pd.DataFrame(merged_bias).to_csv(eval_dir / f'bias_{args.model_name}.csv', index=False)
pd.DataFrame(merged_acc).to_csv(eval_dir / f'acc_{args.model_name}.csv', index=False)
pd.DataFrame(merged_ssim).to_csv(eval_dir / f'ssim_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sdiv).to_csv(eval_dir / f'sdiv_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sres).to_csv(eval_dir / f'sres_{args.model_name}.csv', index=False)
pd.DataFrame(merged_crps).to_csv(eval_dir / f'crps_{args.model_name}.csv', index=False)
pd.DataFrame(merged_crpss).to_csv(eval_dir / f'crpss_{args.model_name}.csv', index=False)
pd.DataFrame(merged_spread).to_csv(eval_dir / f'spread_{args.model_name}.csv', index=False)
pd.DataFrame(merged_ssr).to_csv(eval_dir / f'ssr_{args.model_name}.csv', index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', help='Name of the model specified in your config file, including one of [ecmwf, cma, ukmo, ncep, persistence]')
parser.add_argument('--eval_years', nargs='+', help='Provide the evaluation years')
parser.add_argument('--version_nums', nargs='+', help='Version numbers of the model from multiple checkpoints')
parser.add_argument('--lra5', nargs='+', type=str, default=[], help='List of LRA5 variables to be evaluated')
parser.add_argument('--oras5', nargs='+', type=str, default=[], help='List of ORAS5 variables to be evaluated')
args = parser.parse_args()
main(args)