-
Notifications
You must be signed in to change notification settings - Fork 0
/
py_0011_largest_product_in_a_grid.py
90 lines (84 loc) · 3.86 KB
/
py_0011_largest_product_in_a_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Solution of;
# Project Euler Problem 11: Largest product in a grid
# https://projecteuler.net/problem=11
#
# In the 20×20 grid below, four numbers along a diagonal line
# have been marked with {braces}.
#
# 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
# 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
# 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
# 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
# 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
# 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
# 32 98 81 28 64 23 67 10{26}38 40 67 59 54 70 66 18 38 64 70
# 67 26 20 68 02 62 12 20 95{63}94 39 63 08 40 91 66 49 94 21
# 24 55 58 05 66 73 99 26 97 17{78}78 96 83 14 88 34 89 63 72
# 21 36 23 09 75 00 76 44 20 45 35{14}00 61 33 97 34 31 33 95
# 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
# 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
# 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
# 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
# 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
# 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
# 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
# 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
# 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
# 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
#
# The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
# What is the greatest product of four adjacent numbers
# in the same direction (up, down, left, right, or diagonally)
# in the 20×20 grid?
#
# by lcsm29 http://github.com/lcsm29/project-euler
import timed
def fn_brute(n):
def prod(lst):
result = 1
for elem in lst:
result *= elem
return result
tmp = list(map(int, str_grid.split()))
g = [tmp[i:i + 20] for i in range(0, len(tmp), 20)]
greatest = 1
for x in range(len(g[0])):
for y in range(len(g)):
if x + n < len(g[0]):
greatest = max(greatest, prod([g[y][x + i] for i in range(n)]))
if y + n < len(g):
greatest = max(greatest, prod([g[y + i][x] for i in range(n)]))
if x + n < len(g[0]):
greatest = max(greatest, prod([g[y + i][x + i] for i in range(n)]))
if x - n >= 0:
greatest = max(greatest, prod([g[y + i][x - i] for i in range(n)]))
return greatest
str_grid = (
'''
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
'''
)
if __name__ == '__main__':
n = 4
i = 1_250
prob_id = 11
timed.caller(fn_brute, n, i, prob_id)