接雨水这道题目挺有意思,在面试题中出现频率还挺高的,本文就来步步优化,讲解一下这道题。
先看一下题目:
就是用一个数组表示一个条形图,问你这个条形图最多能接多少水。
int trap(int[] height);
下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。
我第一次看到这个问题,无计可施,完全没有思路,相信很多朋友跟我一样。所以对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。
这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置 i,能装下多少水呢?
能装 2 格水。为什么恰好是两格水呢?因为 height[i] 的高度为 0,而这里最多能盛 2 格水,2-0=2。
为什么位置 i 最多能盛 2 格水呢?因为,位置 i 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 l_max
和 r_max
;位置 i 最大的水柱高度就是 min(l_max, r_max)
。
更进一步,对于位置 i,能够装的水为:
water[i] = min(
# 左边最高的柱子
max(height[0..i]),
# 右边最高的柱子
max(height[i..end])
) - height[i]
这就是本问题的核心思路,我们可以简单写一个暴力算法:
int trap(vector<int>& height) {
int n = height.size();
int ans = 0;
for (int i = 1; i < n - 1; i++) {
int l_max = 0, r_max = 0;
// 找右边最高的柱子
for (int j = i; j < n; j++)
r_max = max(r_max, height[j]);
// 找左边最高的柱子
for (int j = i; j >= 0; j--)
l_max = max(l_max, height[j]);
// 如果自己就是最高的话,
// l_max == r_max == height[i]
ans += min(l_max, r_max) - height[i];
}
return ans;
}
有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算 r_max
和 l_max
的方式非常笨拙,一般的优化方法就是备忘录。
之前的暴力解法,不是在每个位置 i 都要计算 r_max
和 l_max
吗?我们直接把结果都缓存下来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。
我们开两个数组 r_max
和 l_max
充当备忘录,l_max[i]
表示位置 i 左边最高的柱子高度,r_max[i]
表示位置 i 右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:
int trap(vector<int>& height) {
if (height.empty()) return 0;
int n = height.size();
int ans = 0;
// 数组充当备忘录
vector<int> l_max(n), r_max(n);
// 初始化 base case
l_max[0] = height[0];
r_max[n - 1] = height[n - 1];
// 从左向右计算 l_max
for (int i = 1; i < n; i++)
l_max[i] = max(height[i], l_max[i - 1]);
// 从右向左计算 r_max
for (int i = n - 2; i >= 0; i--)
r_max[i] = max(height[i], r_max[i + 1]);
// 计算答案
for (int i = 1; i < n - 1; i++)
ans += min(l_max[i], r_max[i]) - height[i];
return ans;
}
这个优化其实和暴力解法差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。
这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。
首先,看一部分代码:
int trap(vector<int>& height) {
int n = height.size();
int left = 0, right = n - 1;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = max(l_max, height[left]);
r_max = max(r_max, height[right]);
left++; right--;
}
}
对于这部分代码,请问 l_max
和 r_max
分别表示什么意义呢?
很容易理解,l_max
是 height[0..left]
中最高柱子的高度,r_max
是 height[right..end]
的最高柱子的高度。
明白了这一点,直接看解法:
int trap(vector<int>& height) {
if (height.empty()) return 0;
int n = height.size();
int left = 0, right = n - 1;
int ans = 0;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = max(l_max, height[left]);
r_max = max(r_max, height[right]);
// ans += min(l_max, r_max) - height[i]
if (l_max < r_max) {
ans += l_max - height[left];
left++;
} else {
ans += r_max - height[right];
right--;
}
}
return ans;
}
你看,其中的核心思想和之前一模一样,换汤不换药。但是细心的读者可能会发现次解法还是有点细节差异:
之前的备忘录解法,l_max[i]
和 r_max[i]
代表的是 height[0..i]
和 height[i..end]
的最高柱子高度。
ans += min(l_max[i], r_max[i]) - height[i];
但是双指针解法中,l_max
和 r_max
代表的是 height[0..left]
和 height[right..end]
的最高柱子高度。比如这段代码:
if (l_max < r_max) {
ans += l_max - height[left];
left++;
}
此时的 l_max
是 left
指针左边的最高柱子,但是 r_max
并不一定是 left
指针右边最高的柱子,这真的可以得到正确答案吗?
其实这个问题要这么思考,我们只在乎 min(l_max, r_max)
。对于上图的情况,我们已经知道 l_max < r_max
了,至于这个 r_max
是不是右边最大的,不重要,重要的是 height[i]
能够装的水只和 l_max
有关。
坚持原创高质量文章,致力于把算法问题讲清楚,欢迎关注我的公众号 labuladong 获取最新文章:
newler提供java代码:
暴力解法
public int trap(int[] height) {
int ans = 0;
for (int i = 1; i < height.length - 1; i++) {
int leftMax = 0, rightMax = 0;
// 找右边最高的柱子
for (int j = i; j < height.length; j++) {
rightMax = Math.max(height[j], rightMax);
}
// 找左边最高的柱子
for (int j = i; j >= 0; j--) {
leftMax = Math.max(height[j], leftMax);
}
// 如果自己就是最高的话,
// leftMax == rightMax == height[i]
ans += Math.min(leftMax, rightMax) - height[i];
}
return ans;
}
备忘录优化解法
public int trap(int[] height) {
if (height == null || height.length == 0) return 0;
int ans = 0;
// 数组充当备忘录
int[] leftMax = new int[height.length];
int[] rightMax = new int[height.length];
// 初始化base case
leftMax[0] = height[0];
rightMax[height.length - 1] = height[height.length - 1];
// 从左到右计算leftMax
for (int i = 1; i < height.length; i++) {
leftMax[i] = Math.max(height[i], leftMax[i-1]);
}
// 从右到左计算rightMax
for (int i = height.length - 2; i >= 0; i--) {
rightMax[i] = Math.max(height[i], rightMax[i + 1]);
}
// 计算结果
for (int i = 1; i < height.length - 1; i++) {
ans += Math.min(leftMax[i], rightMax[i]) - height[i];
}
return ans;
}
双指针解法
public int trap(int[] height) {
if (height == null || height.length == 0) return 0;
int ans = 0;
int leftMax, rightMax;
// 左右指针
int left = 0, right = height.length - 1;
// 初始化
leftMax = height[0];
rightMax = height[height.length - 1];
while (left < right) {
// 更新左右两边柱子最大值
leftMax = Math.max(height[left], leftMax);
rightMax = Math.max(height[right], rightMax);
// 相当于ans += Math.min(leftMax, rightMax) - height[i]
if (leftMax < rightMax) {
ans += leftMax - height[left];
left++;
} else {
ans += rightMax - height[right];
right--;
}
}
return ans;
}
eric wang 提供 Java 代码
public int trap(int[] height) {
if (height.length == 0) {
return 0;
}
int n = height.length;
int left = 0, right = n - 1;
int ans = 0;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = Math.max(l_max, height[left]);
r_max = Math.max(r_max, height[right]);
if (l_max < r_max) {
ans += l_max - height[left];
left++;
} else {
ans += r_max - height[right];
right--;
}
}
return ans;
}
eric wang 提供 Python3 代码
def trap(self, height: List[int]) -> int:
if not height:
return 0
n = len(height)
left, right = 0, n - 1
ans = 0
l_max = height[0]
r_max = height[n - 1]
while left <= right:
l_max = max(l_max, height[left])
r_max = max(r_max, height[right])
if l_max < r_max:
ans += l_max - height[left]
left += 1
else:
ans += r_max - height[right]
right -= 1
return ans