-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinverse.cu
166 lines (134 loc) · 4.22 KB
/
inverse.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include <cuda_runtime.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "device_launch_parameters.h"
#include <cublas_v2.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <math.h>
//can a function in cuda be called from the the cpp file :(
using namespace std;
#define blocksize 64
extern "C"
double* calculateInverse(double *arr, int len);
__global__ void nodiag_normalize(double *A, double *I, int n, int i) {
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < n && y < n)
if (x == i && x != y) {
I[x*n + y] /= A[i*n + i];
A[x*n + y] /= A[i*n + i];
}
}
__global__ void diag_normalize(double *A, double *I, int n, int i) {
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < n && y < n)
if (x == y && x == i) {
I[x*n + y] /= A[i*n + i];
A[x*n + y] /= A[i*n + i];
}
}
__global__ void gaussjordan(double *A, double *I, int n, int i)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < n && y < n) {
if (x != i) {
I[x*n + y] -= I[i*n + y] * A[x*n + i];
if (y != i) {
A[x*n + y] -= A[i*n + y] * A[x*n + i];
}
}
}
}
__global__ void set_zero(double *A, double *I, int n, int i) {
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < n && y < n) {
if (x != i) {
if (y == i) {
A[x*n + y] = 0;
}
}
}
}
double* calculateInverse(double *L, int n)
{
//flattening matrix
double *iL = new double[n*n];
double *d_A, *d_L, *I, *dI;
float time;
cudaError_t err;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
int ddsize = n * n * sizeof(double);
dim3 threadsPerBlock(blocksize, blocksize);
dim3 numBlocks((n + blocksize - 1) / blocksize, (n + blocksize - 1) / blocksize);
// memory allocation
err = cudaMalloc((void**)&d_A, ddsize);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
err = cudaMalloc((void**)&dI, ddsize);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
//making identity matrix
I = new double[n*n];
for (int i = 0; i<n; i++) {
for (int j = 0; j<n; j++) {
if (i == j) I[i*n + i] = 1.0;
else I[i*n + j] = 0.0;
}
}
//copy data from CPU to GPU
err = cudaMemcpy(d_A, L, ddsize, cudaMemcpyHostToDevice);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
err = cudaMemcpy(dI, I, ddsize, cudaMemcpyHostToDevice);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
//timer start
cudaEventRecord(start, 0);
// L^(-1)
for (int i = 0; i<n; i++) {
nodiag_normalize <<< numBlocks, threadsPerBlock >>>(d_A, dI, n, i);
diag_normalize <<< numBlocks, threadsPerBlock >>>(d_A, dI, n, i);
gaussjordan <<< numBlocks, threadsPerBlock >>>(d_A, dI, n, i);
set_zero <<< numBlocks, threadsPerBlock >>>(d_A, dI, n, i);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);
//copy data from GPU to CPU
err = cudaMemcpy(iL, dI, ddsize, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
err = cudaMemcpy(I, d_A, ddsize, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) { cout << cudaGetErrorString(err) << " in " << __FILE__ << " at line " << __LINE__ << endl; }
cout << "Cuda Time - inverse: " << time << "ms\n";
cudaFree(d_A);
cudaFree(dI);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
{
cout << L[i*n + j] << "\t";
}
cout << endl;
}
double *c = new double[n*n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
{
c[i*n + j] = 0; //put the initial value to zero
for (int x = 0; x < n; x++)
c[i*n + j] = c[i*n + j] + L[i*n + x] * iL[x*n + j]; //matrix multiplication
cout << c[i*n + j] << "\t";
}
cout << endl;
}
delete[]I;
delete[]L;
delete[]iL;
return c;
}