-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch1.tex
40 lines (36 loc) · 1.5 KB
/
ch1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\section{Sets and Functions}
\subsection{Exercises 1.2}
\setcounter{question}{0}
\question{State precisely what it means when two sets A and B are not equal.}
\begin{solution}
$A \neq B \implies$ either \\
1) $A \subset B$ and $B \not\subset A$ or\\
2) $B \subset A$ and $A \not\subset B$\\
\end{solution}
\setcounter{question}{0}
\subsection{Exercises 2.2}
\setcounter{question}{0}
\question{What is $\mathcal{P}(\{1,2,3\})$}
\begin{solution}
$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
\end{solution}
\question{How many elements does a power set of n elements have?}
\begin{solution}
Observe that each element in the power set either contains a given element from the original set or it does not, hence there are 2 possibilities for each of the n elements. Therefore, a power set of n elements has $2^n$ elements.\\\textit{A formal proof likely using induction is left as an exercise.}
\end{solution}
\question{Are the following statements true?}
\begin{parts}
\part{$x\in X \iff \{x\}\in\mathcal{P}(X)$}
\begin{solution}
True.
\end{solution}
\part{$\{x\}\in\mathcal{P}(X) \iff \{x\}\subset X$}
\begin{solution}
True. Consider $\{x\} \in \mathcal{P}(X)$. By definition $x \in X \implies \{x\} \subset X$.\\
Also $\{x\} \subset X \implies x \in X \implies \{x\} \in \mathcal{P}(X)$ by definition.
\end{solution}
\part{$\{x\}\subset\mathcal{P}(X) \iff x\subset X$}
\begin{solution}
False. $x\not\subset X$ by definition an element cannot be a subset.
\end{solution}
\end{parts}