-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathllama_cpp.ts
363 lines (322 loc) Β· 10.7 KB
/
llama_cpp.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/* eslint-disable import/no-extraneous-dependencies */
import {
LlamaModel,
LlamaContext,
LlamaChatSession,
type Token,
ChatUserMessage,
ChatModelResponse,
ChatHistoryItem,
getLlama,
} from "node-llama-cpp";
import {
SimpleChatModel,
type BaseChatModelParams,
} from "@langchain/core/language_models/chat_models";
import type { BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import {
BaseMessage,
AIMessageChunk,
ChatMessage,
} from "@langchain/core/messages";
import { ChatGenerationChunk } from "@langchain/core/outputs";
import {
LlamaBaseCppInputs,
createLlamaModel,
createLlamaContext,
} from "../utils/llama_cpp.js";
/**
* Note that the modelPath is the only required parameter. For testing you
* can set this in the environment variable `LLAMA_PATH`.
*/
export interface LlamaCppInputs
extends LlamaBaseCppInputs,
BaseChatModelParams {}
export interface LlamaCppCallOptions extends BaseLanguageModelCallOptions {
/** The maximum number of tokens the response should contain. */
maxTokens?: number;
/** A function called when matching the provided token array */
onToken?: (tokens: number[]) => void;
}
/**
* To use this model you need to have the `node-llama-cpp` module installed.
* This can be installed using `npm install -S node-llama-cpp` and the minimum
* version supported in version 2.0.0.
* This also requires that have a locally built version of Llama3 installed.
* @example
* ```typescript
* // Initialize the ChatLlamaCpp model with the path to the model binary file.
* const model = await ChatLlamaCpp.initialize({
* modelPath: "/Replace/with/path/to/your/model/gguf-llama3-Q4_0.bin",
* temperature: 0.5,
* });
*
* // Call the model with a message and await the response.
* const response = await model.invoke([
* new HumanMessage({ content: "My name is John." }),
* ]);
*
* // Log the response to the console.
* console.log({ response });
*
* ```
*/
export class ChatLlamaCpp extends SimpleChatModel<LlamaCppCallOptions> {
static inputs: LlamaCppInputs;
maxTokens?: number;
temperature?: number;
topK?: number;
topP?: number;
trimWhitespaceSuffix?: boolean;
_model: LlamaModel;
_context: LlamaContext;
_session: LlamaChatSession | null;
lc_serializable = true;
static lc_name() {
return "ChatLlamaCpp";
}
public constructor(inputs: LlamaCppInputs) {
super(inputs);
this.maxTokens = inputs?.maxTokens;
this.temperature = inputs?.temperature;
this.topK = inputs?.topK;
this.topP = inputs?.topP;
this.trimWhitespaceSuffix = inputs?.trimWhitespaceSuffix;
this._session = null;
}
/**
* Initializes the llama_cpp model for usage in the chat models wrapper.
* @param inputs - the inputs passed onto the model.
* @returns A Promise that resolves to the ChatLlamaCpp type class.
*/
public static async initialize(
inputs: LlamaBaseCppInputs
): Promise<ChatLlamaCpp> {
const instance = new ChatLlamaCpp(inputs);
const llama = await getLlama();
instance._model = await createLlamaModel(inputs, llama);
instance._context = await createLlamaContext(instance._model, inputs);
return instance;
}
_llmType() {
return "llama_cpp";
}
/** @ignore */
_combineLLMOutput() {
return {};
}
invocationParams() {
return {
maxTokens: this.maxTokens,
temperature: this.temperature,
topK: this.topK,
topP: this.topP,
trimWhitespaceSuffix: this.trimWhitespaceSuffix,
};
}
/** @ignore */
async _call(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): Promise<string> {
let prompt = "";
if (messages.length > 1) {
// We need to build a new _session
prompt = this._buildSession(messages);
} else if (!this._session) {
prompt = this._buildSession(messages);
} else {
if (typeof messages[0].content !== "string") {
throw new Error(
"ChatLlamaCpp does not support non-string message content in sessions."
);
}
// If we already have a session then we should just have a single prompt
prompt = messages[0].content;
}
try {
const promptOptions = {
signal: options.signal,
onToken: async (tokens: number[]) => {
options.onToken?.(tokens);
await runManager?.handleLLMNewToken(
this._model.detokenize(tokens.map((num) => num as Token))
);
},
maxTokens: this?.maxTokens,
temperature: this?.temperature,
topK: this?.topK,
topP: this?.topP,
trimWhitespaceSuffix: this?.trimWhitespaceSuffix,
};
// @ts-expect-error - TS2531: Object is possibly 'null'.
const completion = await this._session.prompt(prompt, promptOptions);
return completion;
} catch (e) {
if (typeof e === "object") {
const error = e as Error;
if (error.message === "AbortError") {
throw error;
}
}
throw new Error("Error getting prompt completion.");
}
}
async *_streamResponseChunks(
input: BaseMessage[],
_options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
const promptOptions = {
temperature: this?.temperature,
topK: this?.topK,
topP: this?.topP,
};
const prompt = this._buildPrompt(input);
const sequence = this._context.getSequence();
const stream = await this.caller.call(async () =>
sequence.evaluate(this._model.tokenize(prompt), promptOptions)
);
for await (const chunk of stream) {
yield new ChatGenerationChunk({
text: this._model.detokenize([chunk]),
message: new AIMessageChunk({
content: this._model.detokenize([chunk]),
}),
generationInfo: {},
});
await runManager?.handleLLMNewToken(
this._model.detokenize([chunk]) ?? ""
);
}
}
// This constructs a new session if we need to adding in any sys messages or previous chats
protected _buildSession(messages: BaseMessage[]): string {
let prompt = "";
let sysMessage = "";
let noSystemMessages: BaseMessage[] = [];
let interactions: ChatHistoryItem[] = [];
// Let's see if we have a system message
if (messages.findIndex((msg) => msg.getType() === "system") !== -1) {
const sysMessages = messages.filter(
(message) => message.getType() === "system"
);
const systemMessageContent = sysMessages[sysMessages.length - 1].content;
if (typeof systemMessageContent !== "string") {
throw new Error(
"ChatLlamaCpp does not support non-string message content in sessions."
);
}
// Only use the last provided system message
sysMessage = systemMessageContent;
// Now filter out the system messages
noSystemMessages = messages.filter(
(message) => message.getType() !== "system"
);
} else {
noSystemMessages = messages;
}
// Lets see if we just have a prompt left or are their previous interactions?
if (noSystemMessages.length > 1) {
// Is the last message a prompt?
if (noSystemMessages[noSystemMessages.length - 1].getType() === "human") {
const finalMessageContent =
noSystemMessages[noSystemMessages.length - 1].content;
if (typeof finalMessageContent !== "string") {
throw new Error(
"ChatLlamaCpp does not support non-string message content in sessions."
);
}
prompt = finalMessageContent;
interactions = this._convertMessagesToInteractions(
noSystemMessages.slice(0, noSystemMessages.length - 1)
);
} else {
interactions = this._convertMessagesToInteractions(noSystemMessages);
}
} else {
if (typeof noSystemMessages[0].content !== "string") {
throw new Error(
"ChatLlamaCpp does not support non-string message content in sessions."
);
}
// If there was only a single message we assume it's a prompt
prompt = noSystemMessages[0].content;
}
// Now lets construct a session according to what we got
if (sysMessage !== "" && interactions.length > 0) {
this._session = new LlamaChatSession({
contextSequence: this._context.getSequence(),
systemPrompt: sysMessage,
});
this._session.setChatHistory(interactions);
} else if (sysMessage !== "" && interactions.length === 0) {
this._session = new LlamaChatSession({
contextSequence: this._context.getSequence(),
systemPrompt: sysMessage,
});
} else if (sysMessage === "" && interactions.length > 0) {
this._session = new LlamaChatSession({
contextSequence: this._context.getSequence(),
});
this._session.setChatHistory(interactions);
} else {
this._session = new LlamaChatSession({
contextSequence: this._context.getSequence(),
});
}
return prompt;
}
// This builds a an array of interactions
protected _convertMessagesToInteractions(
messages: BaseMessage[]
): ChatHistoryItem[] {
const result: ChatHistoryItem[] = [];
for (let i = 0; i < messages.length; i += 2) {
if (i + 1 < messages.length) {
const prompt = messages[i].content;
const response = messages[i + 1].content;
if (typeof prompt !== "string" || typeof response !== "string") {
throw new Error(
"ChatLlamaCpp does not support non-string message content."
);
}
const llamaPrompt: ChatUserMessage = { type: "user", text: prompt };
const llamaResponse: ChatModelResponse = {
type: "model",
response: [response],
};
result.push(llamaPrompt);
result.push(llamaResponse);
}
}
return result;
}
protected _buildPrompt(input: BaseMessage[]): string {
const prompt = input
.map((message) => {
let messageText;
if (message.getType() === "human") {
messageText = `[INST] ${message.content} [/INST]`;
} else if (message.getType() === "ai") {
messageText = message.content;
} else if (message.getType() === "system") {
messageText = `<<SYS>> ${message.content} <</SYS>>`;
} else if (ChatMessage.isInstance(message)) {
messageText = `\n\n${message.role[0].toUpperCase()}${message.role.slice(
1
)}: ${message.content}`;
} else {
console.warn(
`Unsupported message type passed to llama_cpp: "${message.getType()}"`
);
messageText = "";
}
return messageText;
})
.join("\n");
return prompt;
}
}