-
Notifications
You must be signed in to change notification settings - Fork 15.9k
/
ollama.py
398 lines (355 loc) Β· 14.3 KB
/
ollama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import json
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast
from langchain_core._api import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_community.llms.ollama import OllamaEndpointNotFoundError, _OllamaCommon
@deprecated("0.0.3", alternative="_chat_stream_response_to_chat_generation_chunk")
def _stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(content=parsed_response.get("response", "")),
generation_info=generation_info,
)
def _chat_stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(
content=parsed_response.get("message", {}).get("content", "")
),
generation_info=generation_info,
)
@deprecated(
since="0.3.1",
removal="1.0.0",
alternative_import="langchain_ollama.ChatOllama",
)
class ChatOllama(BaseChatModel, _OllamaCommon):
"""Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOllama
ollama = ChatOllama(model="llama2")
"""
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "ollama-chat"
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get standard params for tracing."""
params = self._get_invocation_params(stop=stop, **kwargs)
ls_params = LangSmithParams(
ls_provider="ollama",
ls_model_name=self.model,
ls_model_type="chat",
ls_temperature=params.get("temperature", self.temperature),
)
if ls_max_tokens := params.get("num_predict", self.num_predict):
ls_params["ls_max_tokens"] = ls_max_tokens
if ls_stop := stop or params.get("stop", None) or self.stop:
ls_params["ls_stop"] = ls_stop
return ls_params
@deprecated("0.0.3", alternative="_convert_messages_to_ollama_messages")
def _format_message_as_text(self, message: BaseMessage) -> str:
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
if isinstance(message.content, List):
first_content = cast(List[Dict], message.content)[0]
content_type = first_content.get("type")
if content_type == "text":
message_text = f"[INST] {first_content['text']} [/INST]"
elif content_type == "image_url":
message_text = first_content["image_url"]["url"]
else:
message_text = f"[INST] {message.content} [/INST]"
elif isinstance(message, AIMessage):
message_text = f"{message.content}"
elif isinstance(message, SystemMessage):
message_text = f"<<SYS>> {message.content} <</SYS>>"
else:
raise ValueError(f"Got unknown type {message}")
return message_text
def _format_messages_as_text(self, messages: List[BaseMessage]) -> str:
return "\n".join(
[self._format_message_as_text(message) for message in messages]
)
def _convert_messages_to_ollama_messages(
self, messages: List[BaseMessage]
) -> List[Dict[str, Union[str, List[str]]]]:
ollama_messages: List = []
for message in messages:
role = ""
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError("Received unsupported message type for Ollama.")
content = ""
images = []
if isinstance(message.content, str):
content = message.content
else:
for content_part in cast(List[Dict], message.content):
if content_part.get("type") == "text":
content += f"\n{content_part['text']}"
elif content_part.get("type") == "image_url":
image_url = None
temp_image_url = content_part.get("image_url")
if isinstance(temp_image_url, str):
image_url = content_part["image_url"]
elif (
isinstance(temp_image_url, dict) and "url" in temp_image_url
):
image_url = temp_image_url["url"]
else:
raise ValueError(
"Only string image_url or dict with string 'url' "
"inside content parts are supported."
)
image_url_components = image_url.split(",")
# Support data:image/jpeg;base64,<image> format
# and base64 strings
if len(image_url_components) > 1:
images.append(image_url_components[1])
else:
images.append(image_url_components[0])
else:
raise ValueError(
"Unsupported message content type. "
"Must either have type 'text' or type 'image_url' "
"with a string 'image_url' field."
)
ollama_messages.append(
{
"role": role,
"content": content,
"images": images,
}
)
return ollama_messages
def _create_chat_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
payload = {
"model": self.model,
"messages": self._convert_messages_to_ollama_messages(messages),
}
yield from self._create_stream(
payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs
)
async def _acreate_chat_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
payload = {
"model": self.model,
"messages": self._convert_messages_to_ollama_messages(messages),
}
async for stream_resp in self._acreate_stream(
payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat", **kwargs
):
yield stream_resp
def _chat_stream_with_aggregation(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
async def _achat_stream_with_aggregation(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to Ollama's generate endpoint.
Args:
messages: The list of base messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
Chat generations from the model
Example:
.. code-block:: python
response = ollama([
HumanMessage(content="Tell me about the history of AI")
])
"""
final_chunk = self._chat_stream_with_aggregation(
messages,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
chat_generation = ChatGeneration(
message=AIMessage(content=final_chunk.text),
generation_info=final_chunk.generation_info,
)
return ChatResult(generations=[chat_generation])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to Ollama's generate endpoint.
Args:
messages: The list of base messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
Chat generations from the model
Example:
.. code-block:: python
response = ollama([
HumanMessage(content="Tell me about the history of AI")
])
"""
final_chunk = await self._achat_stream_with_aggregation(
messages,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
chat_generation = ChatGeneration(
message=AIMessage(content=final_chunk.text),
generation_info=final_chunk.generation_info,
)
return ChatResult(generations=[chat_generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
try:
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
except OllamaEndpointNotFoundError:
yield from self._legacy_stream(messages, stop, **kwargs)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
async for stream_resp in self._acreate_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
@deprecated("0.0.3", alternative="_stream")
def _legacy_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
prompt = self._format_messages_as_text(messages)
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_chat_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk