-
Notifications
You must be signed in to change notification settings - Fork 16.2k
/
Copy pathollama.py
479 lines (413 loc) Β· 16.2 KB
/
ollama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import json
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
import aiohttp
import requests
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Extra
def _stream_response_to_generation_chunk(
stream_response: str,
) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return GenerationChunk(
text=parsed_response.get("response", ""), generation_info=generation_info
)
class OllamaEndpointNotFoundError(Exception):
"""Raised when the Ollama endpoint is not found."""
class _OllamaCommon(BaseLanguageModel):
base_url: str = "http://localhost:11434"
"""Base url the model is hosted under."""
model: str = "llama2"
"""Model name to use."""
mirostat: Optional[int] = None
"""Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
mirostat_eta: Optional[float] = None
"""Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)"""
mirostat_tau: Optional[float] = None
"""Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)"""
num_ctx: Optional[int] = None
"""Sets the size of the context window used to generate the
next token. (Default: 2048) """
num_gpu: Optional[int] = None
"""The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable."""
num_thread: Optional[int] = None
"""Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores)."""
repeat_last_n: Optional[int] = None
"""Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
repeat_penalty: Optional[float] = None
"""Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)"""
temperature: Optional[float] = None
"""The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)"""
stop: Optional[List[str]] = None
"""Sets the stop tokens to use."""
tfs_z: Optional[float] = None
"""Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)"""
top_k: Optional[int] = None
"""Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)"""
top_p: Optional[float] = None
"""Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)"""
system: Optional[str] = None
"""system prompt (overrides what is defined in the Modelfile)"""
template: Optional[str] = None
"""full prompt or prompt template (overrides what is defined in the Modelfile)"""
format: Optional[str] = None
"""Specify the format of the output (e.g., json)"""
timeout: Optional[int] = None
"""Timeout for the request stream"""
headers: Optional[dict] = None
"""Additional headers to pass to endpoint (e.g. Authorization, Referer).
This is useful when Ollama is hosted on cloud services that require
tokens for authentication.
"""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Ollama."""
return {
"model": self.model,
"format": self.format,
"options": {
"mirostat": self.mirostat,
"mirostat_eta": self.mirostat_eta,
"mirostat_tau": self.mirostat_tau,
"num_ctx": self.num_ctx,
"num_gpu": self.num_gpu,
"num_thread": self.num_thread,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"temperature": self.temperature,
"stop": self.stop,
"tfs_z": self.tfs_z,
"top_k": self.top_k,
"top_p": self.top_p,
},
"system": self.system,
"template": self.template,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model, "format": self.format}, **self._default_params}
def _create_generate_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
images: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
payload = {"prompt": prompt, "images": images}
yield from self._create_stream(
payload=payload,
stop=stop,
api_url=f"{self.base_url}/api/generate/",
**kwargs,
)
async def _acreate_generate_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
images: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
payload = {"prompt": prompt, "images": images}
async for item in self._acreate_stream(
payload=payload,
stop=stop,
api_url=f"{self.base_url}/api/generate/",
**kwargs,
):
yield item
def _create_stream(
self,
api_url: str,
payload: Any,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
elif stop is None:
stop = []
params = self._default_params
for key in self._default_params:
if key in kwargs:
params[key] = kwargs[key]
if "options" in kwargs:
params["options"] = kwargs["options"]
else:
params["options"] = {
**params["options"],
"stop": stop,
**{k: v for k, v in kwargs.items() if k not in self._default_params},
}
if payload.get("messages"):
request_payload = {"messages": payload.get("messages", []), **params}
else:
request_payload = {
"prompt": payload.get("prompt"),
"images": payload.get("images", []),
**params,
}
response = requests.post(
url=api_url,
headers={
"Content-Type": "application/json",
**(self.headers if isinstance(self.headers, dict) else {}),
},
json=request_payload,
stream=True,
timeout=self.timeout,
)
response.encoding = "utf-8"
if response.status_code != 200:
if response.status_code == 404:
raise OllamaEndpointNotFoundError(
"Ollama call failed with status code 404. "
"Maybe your model is not found "
f"and you should pull the model with `ollama pull {self.model}`."
)
else:
optional_detail = response.json().get("error")
raise ValueError(
f"Ollama call failed with status code {response.status_code}."
f" Details: {optional_detail}"
)
return response.iter_lines(decode_unicode=True)
async def _acreate_stream(
self,
api_url: str,
payload: Any,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
elif stop is None:
stop = []
params = self._default_params
for key in self._default_params:
if key in kwargs:
params[key] = kwargs[key]
if "options" in kwargs:
params["options"] = kwargs["options"]
else:
params["options"] = {
**params["options"],
"stop": stop,
**{k: v for k, v in kwargs.items() if k not in self._default_params},
}
if payload.get("messages"):
request_payload = {"messages": payload.get("messages", []), **params}
else:
request_payload = {
"prompt": payload.get("prompt"),
"images": payload.get("images", []),
**params,
}
async with aiohttp.ClientSession() as session:
async with session.post(
url=api_url,
headers={"Content-Type": "application/json"},
json=request_payload,
timeout=self.timeout,
) as response:
if response.status != 200:
if response.status == 404:
raise OllamaEndpointNotFoundError(
"Ollama call failed with status code 404."
)
else:
optional_detail = await response.json().get("error")
raise ValueError(
f"Ollama call failed with status code {response.status}."
f" Details: {optional_detail}"
)
async for line in response.content:
yield line.decode("utf-8")
def _stream_with_aggregation(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> GenerationChunk:
final_chunk: Optional[GenerationChunk] = None
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
async def _astream_with_aggregation(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> GenerationChunk:
final_chunk: Optional[GenerationChunk] = None
async for stream_resp in self._acreate_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
class Ollama(BaseLLM, _OllamaCommon):
"""Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example:
.. code-block:: python
from langchain_community.llms import Ollama
ollama = Ollama(model="llama2")
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ollama-llm"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
images: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to Ollama's generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = ollama("Tell me a joke.")
"""
# TODO: add caching here.
generations = []
for prompt in prompts:
final_chunk = super()._stream_with_aggregation(
prompt,
stop=stop,
images=images,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
generations.append([final_chunk])
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
images: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to Ollama's generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = ollama("Tell me a joke.")
"""
# TODO: add caching here.
generations = []
for prompt in prompts:
final_chunk = await super()._astream_with_aggregation(
prompt,
stop=stop,
images=images,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
generations.append([final_chunk])
return LLMResult(generations=generations)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
async for stream_resp in self._acreate_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)