-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_DSINMF.m
72 lines (65 loc) · 2.39 KB
/
run_DSINMF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [nmi,ami,ari,accuracy,glabel] = run_DSINMF(path_data,path_label,k_array_list)
X=load(path_data);
X = abs(X);
X = X';%%%%%%%Rows are genes, columns are cell sample
X(all(X == 0,2),:)=[];
real_label = load(path_label);
%==============Constructing a weight matrix==============
%Preset value before constructing weight matrix
options = [];
options.Metric = 'Cosine';
options.NeighborMode = 'KNN';%KNN
options.k =5; %5 nearest neighbors
options.WeightMode = 'Cosine';%Weights are 0 or 1, it can eplace with 'HeatKernel', 'Euclidean'
options.maxIter=400;
options1 = [];
options1.Metric = 'Cosine';
options1.NeighborMode = 'KNN';%KNN
options1.k =10; %5 nearest neighbors
options1.WeightMode = 'Cosine';%Weights are 0 or 1, it can eplace with 'HeatKernel', 'Euclidean'
options1.maxIters=400;
W = constructW(X',options);
% W = SNN_Gauss(X', 10, 'cosine',1.0);
X_in=X;
if k_array_list < 2
sprintf('k_value is not true!!!\n');
exit(-1);
end
W = function_ds(W);
[Z_final,A_final] = factorization_AB(X_in, k_array_list(1), W, options);
A_in=A_final;
for i=2:(length(k_array_list)+1)
if i==(length(k_array_list)+1)
ks = max(real_label);
else
ks = k_array_list(i);
end
[B,G_final] = factorization_BF(X_in,A_in,ks,W,options1);
A_in=G_final;
end
l = zeros(1,size(G_final,2));
for e=1:size(G_final,2)
v=G_final(:,e);
ma=max(v);
[s,t]=find(v==ma);
l(1,e)=s;
end
%%%%%%%%%%%%%%==================Performance evaluation===============================
ll=real_label; %%% the label originally identified by the authors
l=l'; %%% Labels obtained by DRjCC
[newl] = bestMap(ll,l); %% Permute label of l to match ll as good as possible
glabel=newl;
figure(1);
mappedX = tsne(X');
gscatter(mappedX(:,1), mappedX(:,2),newl);
nmi=compute_NMI(ll,newl); %% Calculating the Normalized Mutual Information (NMI)
ami=AMI(ll,newl); %% Calculating the Adjusted Mutual Information (AMI)
ari = ARI(ll,max(ll),newl,max(newl)); %% Calculating the Adjusted Rand Index (ARI)
pre_label =newl;
if ~isempty(ll)
exact = find(pre_label == ll);
accuracy = length(exact)/length(newl); %% Calculating the accuracy
else
accuracy = [];
end
end