forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
executable file
·242 lines (185 loc) · 8.63 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import itertools
import json
import numpy as np
import os
import pandas
import progressbar
import sys
import tables
import tensorflow as tf
from attrdict import AttrDict
from collections import namedtuple
from ds_ctcdecoder import ctc_beam_search_decoder_batch, Scorer
from multiprocessing import Pool, cpu_count
from six.moves import zip, range
from util.audio import audiofile_to_input_vector
from util.config import Config, initialize_globals
from util.flags import create_flags, FLAGS
from util.logging import log_error
from util.preprocess import pmap, preprocess
from util.text import Alphabet, ctc_label_dense_to_sparse, wer, levenshtein
def split_data(dataset, batch_size):
remainder = len(dataset) % batch_size
if remainder != 0:
dataset = dataset[:-remainder]
for i in range(0, len(dataset), batch_size):
yield dataset[i:i + batch_size]
def pad_to_dense(jagged):
maxlen = max(len(r) for r in jagged)
subshape = jagged[0].shape
padded = np.zeros((len(jagged), maxlen) +
subshape[1:], dtype=jagged[0].dtype)
for i, row in enumerate(jagged):
padded[i, :len(row)] = row
return padded
def process_decode_result(item):
label, decoding, distance, loss = item
sample_wer = wer(label, decoding)
return AttrDict({
'src': label,
'res': decoding,
'loss': loss,
'distance': distance,
'wer': sample_wer,
'levenshtein': levenshtein(label.split(), decoding.split()),
'label_length': float(len(label.split())),
})
def calculate_report(labels, decodings, distances, losses):
r'''
This routine will calculate a WER report.
It'll compute the `mean` WER and create ``Sample`` objects of the ``report_count`` top lowest
loss items from the provided WER results tuple (only items with WER!=0 and ordered by their WER).
'''
samples = pmap(process_decode_result, zip(labels, decodings, distances, losses))
total_levenshtein = sum(s.levenshtein for s in samples)
total_label_length = sum(s.label_length for s in samples)
# Getting the WER from the accumulated levenshteins and lengths
samples_wer = total_levenshtein / total_label_length
# Order the remaining items by their loss (lowest loss on top)
samples.sort(key=lambda s: s.loss)
# Then order by WER (highest WER on top)
samples.sort(key=lambda s: s.wer, reverse=True)
return samples_wer, samples
def evaluate(test_data, inference_graph, alphabet):
scorer = Scorer(FLAGS.lm_alpha, FLAGS.lm_beta,
FLAGS.lm_binary_path, FLAGS.lm_trie_path,
Config.alphabet)
def create_windows(features):
num_strides = len(features) - (Config.n_context * 2)
# Create a view into the array with overlapping strides of size
# numcontext (past) + 1 (present) + numcontext (future)
window_size = 2*Config.n_context+1
features = np.lib.stride_tricks.as_strided(
features,
(num_strides, window_size, Config.n_input),
(features.strides[0], features.strides[0], features.strides[1]),
writeable=False)
return features
# Create overlapping windows over the features
test_data['features'] = test_data['features'].apply(create_windows)
with tf.Session(config=Config.session_config) as session:
inputs, outputs, layers = inference_graph
# Transpose to batch major for decoder
transposed = tf.transpose(outputs['outputs'], [1, 0, 2])
labels_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size, None], name="labels")
label_lengths_ph = tf.placeholder(tf.int32, [FLAGS.test_batch_size], name="label_lengths")
sparse_labels = tf.cast(ctc_label_dense_to_sparse(labels_ph, label_lengths_ph, FLAGS.test_batch_size), tf.int32)
loss = tf.nn.ctc_loss(labels=sparse_labels,
inputs=layers['raw_logits'],
sequence_length=inputs['input_lengths'])
# Create a saver using variables from the above newly created graph
mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
saver = tf.train.Saver(mapping)
# Restore variables from training checkpoint
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if not checkpoint:
log_error('Checkpoint directory ({}) does not contain a valid checkpoint state.'.format(FLAGS.checkpoint_dir))
exit(1)
checkpoint_path = checkpoint.model_checkpoint_path
saver.restore(session, checkpoint_path)
logitses = []
losses = []
print('Computing acoustic model predictions...')
batch_count = len(test_data) // FLAGS.test_batch_size
bar = progressbar.ProgressBar(max_value=batch_count,
widget=progressbar.AdaptiveETA)
# First pass, compute losses and transposed logits for decoding
for batch in bar(split_data(test_data, FLAGS.test_batch_size)):
session.run(outputs['initialize_state'])
features = pad_to_dense(batch['features'].values)
features_len = batch['features_len'].values
labels = pad_to_dense(batch['transcript'].values)
label_lengths = batch['transcript_len'].values
logits, loss_ = session.run([transposed, loss], feed_dict={
inputs['input']: features,
inputs['input_lengths']: features_len,
labels_ph: labels,
label_lengths_ph: label_lengths
})
logitses.append(logits)
losses.extend(loss_)
ground_truths = []
predictions = []
print('Decoding predictions...')
bar = progressbar.ProgressBar(max_value=batch_count,
widget=progressbar.AdaptiveETA)
# Get number of accessible CPU cores for this process
try:
num_processes = cpu_count()
except:
num_processes = 1
# Second pass, decode logits and compute WER and edit distance metrics
for logits, batch in bar(zip(logitses, split_data(test_data, FLAGS.test_batch_size))):
seq_lengths = batch['features_len'].values.astype(np.int32)
decoded = ctc_beam_search_decoder_batch(logits, seq_lengths, alphabet, FLAGS.beam_width,
num_processes=num_processes, scorer=scorer)
ground_truths.extend(alphabet.decode(l) for l in batch['transcript'])
predictions.extend(d[0][1] for d in decoded)
distances = [levenshtein(a, b) for a, b in zip(ground_truths, predictions)]
wer, samples = calculate_report(ground_truths, predictions, distances, losses)
mean_edit_distance = np.mean(distances)
mean_loss = np.mean(losses)
# Take only the first report_count items
report_samples = itertools.islice(samples, FLAGS.report_count)
print('Test - WER: %f, CER: %f, loss: %f' %
(wer, mean_edit_distance, mean_loss))
print('-' * 80)
for sample in report_samples:
print('WER: %f, CER: %f, loss: %f' %
(sample.wer, sample.distance, sample.loss))
print(' - src: "%s"' % sample.src)
print(' - res: "%s"' % sample.res)
print('-' * 80)
return samples
def main(_):
initialize_globals()
if not FLAGS.test_files:
log_error('You need to specify what files to use for evaluation via '
'the --test_files flag.')
exit(1)
global alphabet
alphabet = Alphabet(FLAGS.alphabet_config_path)
# sort examples by length, improves packing of batches and timesteps
test_data = preprocess(
FLAGS.test_files.split(','),
FLAGS.test_batch_size,
alphabet=alphabet,
numcep=Config.n_input,
numcontext=Config.n_context,
hdf5_cache_path=FLAGS.hdf5_test_set).sort_values(
by="features_len",
ascending=False)
from DeepSpeech import create_inference_graph
graph = create_inference_graph(batch_size=FLAGS.test_batch_size, n_steps=-1)
samples = evaluate(test_data, graph, alphabet)
if FLAGS.test_output_file:
# Save decoded tuples as JSON, converting NumPy floats to Python floats
json.dump(samples, open(FLAGS.test_output_file, 'w'), default=lambda x: float(x))
if __name__ == '__main__':
create_flags()
tf.app.flags.DEFINE_string('hdf5_test_set', '', 'path to hdf5 file to cache test set features')
tf.app.flags.DEFINE_string('test_output_file', '', 'path to a file to save all src/decoded/distance/loss tuples')
tf.app.run(main)